0.1. Williams KJ, Tabas I. The response-to-retention hypoth esis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995;15(5):551–61.
2. Bäck M, Yurdagul A Jr, Tabas I, Öörni K, Kovanen PT. Inflamma tion and its resolution in atherosclerosis: mediators and therapeu tic opportunities. Nat Reviews Cardiol. 2019;16(7):389–406.
3. Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, et al. Dysregulated cellular metabolism in atherosclero sis: mediators and therapeutic opportunities. Nat Metabolism. 2024;6(4):617–38.
4. Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein reten tion as the initiating process in atherosclerosis: update and thera peutic implications. Circulation. 2007;116(16):1832–44.
5. Boren J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeu tic insights: a consensus statement from the European atheroscle rosis society consensus panel. Eur Heart J. 2020;41(24):2313–30.
6. Galkina E, Ley K. Immune and inflammatory mechanisms of ath erosclerosis. Annu Rev Immunol. 2009;27(1):165–97.
7. Yurdagul A Jr, Finney AC, Woolard MD, Orr AW. The arterial microenvironment: the where and why of atherosclerosis. Bio chem J. 2016;473(10):1281–95.
8. Zhang X, Sessa WC, Fernández-Hernando C. Endothelial trans cytosis of lipoproteins in atherosclerosis. Front Cardiovasc Med. 2018;5:130. Gerrity RG.
9. The role of the monocyte in atherogenesis: I. Transi tion of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981;103(2):181.
10. Schrijvers DM, De Meyer GR, Kockx MM, Herman AG, Mar tinet W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25(6):1256–61.
11. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists’ view. Eur Heart J. 2013;34(10):719–28.
12. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92.
13. Davies MJ, Thomas A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med. 1984;310(18):1137–40.
14. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.
15. Fiolet AT, Opstal TS, Mosterd A, Eikelboom JW, Jolly SS, Keech AC, et al. Efficacy and safety of low-dose Colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials. Eur Heart J. 2021;42(28):2765–75. 16. Chistiakov DA, Sobenin IA, Orekhov AN. Vascular extracellular matrix in atherosclerosis. Cardiol Rev. 2013;21(6):270–88. 17. Hynes RO, Naba A. Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol. 2012;4(1):a004903.
18. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degra dation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3(12):a005058.
19. Rohwedder I, Montanez E, Beckmann K, Bengtsson E, Dunér P, Nilsson J, et al. Plasma fibronectin deficiency impedes ath erosclerosis progression and fibrous cap formation. EMBO Mol Med. 2012;4(7):564–76.
20. Lin PK, Davis GE. Extracellular matrix remodeling in vascular disease: defining its regulators and pathological influence. Arte rioscler Thromb Vasc Biol. 2023;43(9):1599–616.
21. Schneller M, Vuori K, Ruoslahti E. αvβ3 integrin associates with activated insulin and PDGFβ receptors and potentiates the bio logical activity of PDGF. EMBO J. 1997.
22. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteogly cans. Cold Spring Harb Perspect Biol. 2011;3(7):a004952.
23. Yurdagul A Jr. Crosstalk between macrophages and vascular smooth muscle cells in atherosclerotic plaque stability. Arterio sclerosis, thrombosis, and vascular biology. 2022;42(4):372–80.
24. Yurdagul A Jr, Orr AW. Blood brothers: hemodynamics and cell matrix interactions in endothelial function. Antioxid Redox Sig nal. 2016;25(7):415–34.
25. Dekker RJ, Van Soest S, Fontijn RD, Salamanca S, De Groot PG, VanBavel E, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood J Am Soc Hematol. 2002;100(5):1689–98.
26. He M, Huang T-S, Li S, Hong H-C, Chen Z, Martin M, et al. Atheroprotective flow upregulates ITPR3 (inositol 1, 4, 5-tri sphosphate receptor 3) in vascular endothelium via KLF4 (Krüp pel-like factor 4)-mediated histone modifications. Arterioscler Thromb Vasc Biol. 2019;39(5):902–14.
27. Tamargo IA, Baek KI, Xu C, Kang DW, Kim Y, Andueza A, et al. HEG1 protects against atherosclerosis by regulating stable f low-induced KLF2/4 expression in endothelial cells. Circulation. 2024;149(15):1183–201.
28. Sangwung P, Zhou G, Nayak L, Chan ER, Kumar S, Kang D-W, et al. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight. 2017;2(4):e91700.
29. Kraehling JR, Chidlow JH, Rajagopal C, Sugiyama MG, Fowler JW, Lee MY, et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun. 2016;7(1):13516.
30. Wight TN. A role for proteoglycans in vascular disease. Matrix Biol. 2018;71:396–420.
31. CAMEJO G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in athero genesis. Adv Lipid Res. 1982;19:1–53.
32. Khan BV, Harrison DG, Olbrych MT, Alexander RW, Med ford RM. Nitric oxide regulates vascular cell adhesion mol ecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci. 1996;93(17):9114–9.
33. Habas K, Shang L. Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells. Tissue Cell. 2018;54:139–43.
34. Hahn C, Schwartz MA. Mechanotransduction in vascular physiol ogy and atherogenesis. Nat Rev Mol Cell Biol. 2009;10(1):53–62.
35. Yurdagul A Jr, Green J, Albert P, McInnis MC, Mazar AP, Orr AW. α5β1 integrin signaling mediates oxidized low-densitylipoprotein–induced inflammation and early atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(7):1362–73. 36. Al-Yafeai Z, Yurdagul A Jr, Peretik JM, Alfaidi M, Murphy PA, Orr AW. Endothelial FN (Fibronectin) deposition by Α5β1 integ rins drives atherogenic inflammation. Arteriosclerosis, thrombo sis, and vascular biology. 2018;38(11):2601–14.
37. Méndez-Barbero N, Gutiérrez-Muñoz C, Blanco-Colio LM. Cel lular crosstalk between endothelial and smooth muscle cells in vascular wall remodeling. Int J Mol Sci. 2021;22(14):7284.
38. Maleszewska M, Moonen J-RA, Huijkman N, van de Sluis B, Krenning G, Harmsen MC. IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB dependent manner. Immunobiology. 2013;218(4):443–54.
39. Liang G, Wang S, Shao J, Jin Y-J, Xu L, Yan Y, et al. Tenascin-X mediates flow-induced suppression of EndMT and atherosclero sis. Circul Res. 2022;130(11):1647–59.
40. Climent M, Quintavalle M, Miragoli M, Chen J, Condorelli G, Elia L. TGFβ triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circul Res. 2015;116(11):1753–64.
41. Li M, Qian M, Kyler K, Xu J. Endothelial–vascular smooth mus cle cells interactions in atherosclerosis. Front Cardiovasc Med. 2018;5:151.
42. Wall VZ, Bornfeldt KE. Arterial smooth muscle. Arteriosclerosis, thrombosis, and vascular biology. 2014;34(10):2175–9.
43. Hedin U, Bottger BA, Forsberg E, Johansson S, Thyberg J. Diverse effects of fibronectin and laminin on phenotypic prop erties of cultured arterial smooth muscle cells. J Cell Biol. 1988;107(1):307–19.
44. Kingsley K, Huff J, Rust W, Carroll K, Martinez A, Fitchmun M, et al. ERK1/2 mediates PDGF-BB stimulated vascular smooth muscle cell proliferation and migration on laminin-5. Biochem Biophys Res Commun. 2002;293(3):1000–6.
45. Chahine MN, Blackwood DP, Dibrov E, Richard MN, Pierce GN. Oxidized LDL affects smooth muscle cell growth through MAPK-mediated actions on nuclear protein import. J Mol Cell Cardiol. 2009;46(3):431–41.
46. Orr AW, Lee MY, Lemmon JA, Yurdagul A Jr, Gomez MF, Schoppee Bortz PD, et al. Molecular mechanisms of collagen isotype-specific modulation of smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol. 2009;29(2):225–31.
47. Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, et al. Transdifferentiation of vascular smooth mus cle cells to macrophage-like cells during atherogenesis. Circul Res. 2014;115(7):662–7.
48. Xue Y, Luo M, Hu X, Li X, Shen J, Zhu W, et al. Macrophages regulate vascular smooth muscle cell function during atheroscle rosis progression through IL-1β/STAT3 signaling. Commun Biol ogy. 2022;5(1):1316.
49. Beck-Joseph J, Tabrizian M, Lehoux S, Corrigendum. Molecu lar interactions between vascular smooth muscle cells and macrophages in atherosclerosis. Front Cardiovasc Med. 2024;11:1462284.
50. Filippov S, Koenig GC, Chun T-H, Hotary KB, Ota I, Bugge TH, et al. MT1-matrix metalloproteinase directs arterial wall invasion and Neointima formation by vascular smooth muscle cells. J Exp Med. 2005;202(5):663–71.
51. Grootaert MO, Bennett MR. Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovascular Res. 2021;117(11):2326–39.
52. Long X, Miano JM. Transforming growth factor-β1 (TGF-β1) utilizes distinct pathways for the transcriptional activation of MicroRNA 143/145 in human coronary artery smooth muscle cells. J Biol Chem. 2011;286(34):30119–29.
53. Yoshida T, Sinha S, Dandré F, Wamhoff BR, Hoofnagle MH, Kre mer BE, et al. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Circul Res. 2003;92(8):856–64.
54. Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21(6):628–37.
55. Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circul Res. 2016;118(4):692–702.
56. Fidler TP, Dunbar A, Kim E, Hardaway B, Pauli J, Xue C, et al. Suppression of IL-1β promotes beneficial accumulation of fibro blast-like cells in atherosclerotic plaques in clonal hematopoiesis. Nat Cardiovasc Res. 2024;3(1):60–75.
57. Kumar D, Pandit R, Yurdagul A Jr. Mechanisms of continual effe rocytosis by macrophages and its role in mitigating atherosclero sis. Immunometabolism. 2023;5(1):e00017.
58. Gerlach BD, Ampomah PB, Yurdagul A, Liu C, Lauring MC, Wang X, et al. Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metabol. 2021;33(12):2445–63. e8.
59. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Hen son PM. Macrophages that have ingested apoptotic cells in vitro inhibit Proinflammatory cytokine production through autocrine/ paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Investig. 1998;101(4):890–8.
60. Yurdagul A, Subramanian M, Wang X, Crown SB, Ilkayeva OR, Darville L, et al. Macrophage metabolism of apoptotic cell derived arginine promotes continual efferocytosis and resolution of injury. Cell Metabol. 2020;31(3):518–33. e10.
61. Han X, Kitamoto S, Wang H, Boisvert WA. Interleukin-10 over expression in macrophages suppresses atherosclerosis in hyper lipidemic mice. FASEB J. 2010;24(8):2869.
62. Halvorsen B, Holm S, Yndestad A, Scholz H, Sagen EL, Nebb H, et al. Interleukin-10 increases reverse cholesterol transport in mac rophages through its bidirectional interaction with liver X recep tor α. Biochem Biophys Res Commun. 2014;450(4):1525–30.
63. Yurdagul A Jr, Kong N, Gerlach BD, Wang X, Ampomah P, Kuriakose G, et al. ODC (ornithine decarboxylase)-dependent Putrescine synthesis maintains MerTK (MER tyrosine-protein kinase) expression to drive resolution. Arterioscler Thromb Vasc Biol. 2021;41(3):e144–59.
64. Noelia A, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immu nity. 2009;31(2):245–58.
65. Ngai D, Schilperoort M, Tabas I. Efferocytosis-induced lactate enables the proliferation of pro-resolving macrophages to medi ate tissue repair. Nat Metabolism. 2023;5(12):2206–19.
66. Dagvadorj J, Naiki Y, Tumurkhuu G, Noman ASM, Iftekar E-Khuda I, Koide N, et al. Interleukin (IL)-10 attenuates lipo polysaccharide-induced IL-6 production via Inhibition of IκB-ζ activity by Bcl-3. Innate Immun. 2009;15(4):217–24.
67. Anti-Inflammatory S-R. Cutting edge: A transcriptional repressor. J Immunol. 2007;179:7215–9.
68. Yang Q, Zheng C, Cao J, Cao G, Shou P, Lin L, et al. Spermi dine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death Differ. 2016;23(11):1850–61.
69. Zhang M, Caragine T, Wang H, Cohen PS, Botchkina G, Soda K, et al. Spermine inhibits Proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. J Exp Med. 1997;185(10):1759–68.
70. Cai B, Thorp EB, Doran AC, Subramanian M, Sansbury BE, Lin C-S et al. MerTK cleavage limits proresolving mediator biosyn thesis and exacerbates tissue inflammation. Proceedings of the National Academy of Sciences. 2016;113(23):6526-31. 71. Doran AC, Yurdagul A Jr, Tabas I. Efferocytosis in health and dis ease. Nat Rev Immunol. 2020;20(4):254–67.
72. Shah PK. Molecular mechanisms of plaque instability. Curr Opin Lipidol. 2007;18(5):492–9.
73. Kojima Y, Volkmer J-P, McKenna K, Civelek M, Lusis AJ, Miller CL, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536(7614):86–90.
74. Doran AC, Ozcan L, Cai B, Zheng Z, Fredman G, Rymond CC, et al. CAMKIIγ suppresses an efferocytosis pathway in mac rophages and promotes atherosclerotic plaque necrosis. J Clin Investig. 2017;127(11):4075–89.
75. Cai B, Thorp EB, Doran AC, Sansbury BE, Daemen MJ, Dor weiler B, et al. MerTK receptor cleavage promotes plaque necro sis and defective resolution in atherosclerosis. J Clin Investig. 2017;127(2):564–8.
76. Thorp E, Vaisar T, Subramanian M, Mautner L, Blobel C, Tabas I. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J Biol Chem. 2011;286(38):33335–44.
77. He C, Medley SC, Hu T, Hinsdale ME, Lupu F, Virmani R, et al. PDGFRβ signalling regulates local inflammation and syner gizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015;6(1):7770.
78. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995;75(3):487–517.
79. Grainger DJ. Transforming growth factor Β and atherosclerosis: so far, so good for the protective cytokine hypothesis. Arterioscle rosis, thrombosis, and vascular biology. 2004;24(3):399–404.
80. Feinberg MW, Watanabe M, Lebedeva MA, Depina AS, Hanai J-i, Mammoto T, et al. Transforming growth factor-β1 Inhibition of vascular smooth muscle cell activation is mediated via Smad3. J Biol Chem. 2004;279(16):16388–93.
81. Yang L, Gao L, Nickel T, Yang J, Zhou J, Gilbertsen A, et al. Lactate promotes synthetic phenotype in vascular smooth muscle cells. Circul Res. 2017;121(11):1251–62.
82. Grossi M, Rippe C, Sathanoori R, Swärd K, Forte A, Erlinge D, et al. Vascular smooth muscle cell proliferation depends on caveolin 1-regulated polyamine uptake. Biosci Rep. 2014;34(6):e00153.
83. Miteva K, Burger F, Baptista D, Roth A, Da Silva R, Mach F, et al. Effect of monocytes on NLRP3 inflammasome activation in vascular smooth muscle cells phenotypic switch and foam cells formation in atherosclerosis. Atherosclerosis. 2020;315:e20. 84. Gough PJ, Gomez IG, Wille PT, Raines EW. Macrophage expres sion of active MMP-9 induces acute plaque disruption in apoE deficient mice. J Clin Investig. 2006;116(1):59–69.
85. Quillard T, Tesmenitsky Y, Croce K, Travers R, Shvartz E, Koski nas KC, et al. Selective Inhibition of matrix metalloproteinase-13 increases collagen content of established mouse atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31(11):2464–72.
86. Ren W, Wang Z, Wang J, Wu Z, Ren Q, Yu A, et al. IL-5 over expression attenuates aortic dissection by reducing inflammation and smooth muscle cell apoptosis. Life Sci. 2020;241:117144.
87. Ikeda K, Souma Y, Akakabe Y, Kitamura Y, Matsuo K, Shi moda Y, et al. Macrophages play a unique role in the plaque calcification by enhancing the osteogenic signals exerted by vascular smooth muscle cells. Biochem Biophys Res Commun. 2012;425(1):39–44.
88. Tang J, Li T, Xiong X, Yang Q, Su Z, Zheng M, et al. Colchicine delivered by a novel nanoparticle platform alleviates atheroscle rosis by targeted Inhibition of NF-κB/NLRP3 pathways in inflam matory endothelial cells. J Nanobiotechnol. 2023;21(1):460.
89. Boada C, Zinger A, Tsao C, Zhao P, Martinez JO, Hartman K, et al. Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circul Res. 2020;126(1):25–37.
90. Kamaly N, Fredman G, Fojas JJR, Subramanian M, Choi WI, Zepeda K, et al. Targeted interleukin-10 nanotherapeutics devel oped with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano. 2016;10(5):5280–92.
91. Qiu S, Liu J, Chen J, Li Y, Bu T, Li Z, et al. Targeted delivery of MerTK protein via cell membrane engineered nanoparticle enhances efferocytosis and attenuates atherosclerosis in diabetic ApoE–/– mice. J Nanobiotechnol. 2024;22(1):178.
92. Sager HB, Dutta P, Dahlman JE, Hulsmans M, Courties G, Sun Y, et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocar dial infarction. Sci Transl Med. 2016;8(342):ra34280–80.
93. Yu M, Amengual J, Menon A, Kamaly N, Zhou F, Xu X, et al. Targeted nanotherapeutics encapsulating liver X receptor agonist GW3965 enhance antiatherogenic effects without adverse effects on hepatic lipid metabolism in Ldlr–/– mice. Adv Healthc Mater. 2017;6(20):1700313.
94. Nakashiro S, Matoba T, Umezu R, Koga J-i, Tokutome M, Kat suki S, et al. Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/mac rophage differentiation in ApoE–/– mice. Arterioscler Thromb Vasc Biol. 2016;36(3):491–500.
95. Flores AM, Hosseini-Nassab N, Jarr K-U, Ye J, Zhu X, Wirka R, et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat Nanotech nol. 2020;15(2):154–61.
96. Dalli J, Consalvo AP, Ray V, Di Filippo C, D’Amico M, Mehta N, et al. Proresolving and tissue-protective actions of Annexin A1–based cleavage-resistant peptides are mediated by formyl peptide receptor 2/lipoxin A4 receptor. J Immunol. 2013;190(12):6478–87.
97. Chuang ST, Stein JB, Nevins S, Kilic Bektas C, Choi HK, Ko WK, et al. Enhancing CAR macrophage efferocytosis via sur face engineered lipid nanoparticles targeting LXR signaling. Adv Mater. 2024;36(19):2308377.
98. Geng S, Lu R, Zhang Y, Wu Y, Xie L, Caldwell BA, et al. Monocytes reprogrammed by 4-PBA potently contribute to the resolution of inflammation and atherosclerosis. Circul Res. 2024;135(8):856–72.
99. Williams JW, Winkels H, Durant CP, Zaitsev K, Ghosheh Y, Ley K. Single cell RNA sequencing in atherosclerosis research. Circul Res. 2020;126(9):1112–26.
100. Seeley EH, Liu Z, Yuan S, Stroope C, Cockerham E, Rashdan NA, et al. Spatially resolved metabolites in stable and unstable human atherosclerotic plaques identified by mass spectrometry imaging. Arterioscler Thromb Vasc Biol. 2023;43(9):1626–35.