导读
研究方法
从两家医院中选择接受ETV/TFV治疗超过5年且在治疗前5年未被诊断为HCC的CHB患者。研究人员使用了36个变量,包括基线特征(年龄、性别、
图1 流程图:研究设计和患者入组
研究结果
在5-15年期间,衍生队列和外部验证队列中分别有279/5908(4.7%)和25/562(4.5%)的患者发展为HCC。在训练数据集(n=4726)中,逻辑回归分析显示出最高的曲线下面积(AUC)为0.803和平衡准确率为0.735,优于其他ML算法。结合逻辑回归和随机森林的集成模型表现最佳(AUC为0.811,平衡准确率为0.754)。测试数据集(n=1182)的结果验证了集成模型的良好性能(AUC为0.784,平衡准确率为0.712)。外部验证确认了该集成模型的预测准确性(AUC为0.862,平衡准确率为0.771)。开发了一个基于Web的计算器(http://ai-wm.khu.ac.kr/HCC/)。
结论
研究结果表明所开发并在外部验证的ML模型(MAPL-5)很好地预测了ETV/TFV治疗5年后的HCC风险,可用于接受长期(> 5年)抗病毒治疗的CHB患者的HCC风险预测,促进基于风险分层的个体化HCC监测。
参考文献:
1.Ha Y, Lee S, Lim J, et al. A Machine Learning Model to Predict De Novo Hepatocellular Carcinoma Beyond Year 5 of Antiviral Therapy in Patients With Chronic Hepatitis B. Liver Int. 2024 Dec 18.
(本网站所有内容,凡注明来源为“医脉通”,版权均归医脉通所有,未经授权,任何媒体、网站或个人不得转载,否则将追究法律责任,授权转载时须注明“来源:医脉通”。本网注明来源为其他媒体的内容为转载,转载仅作观点分享,版权归原作者所有,如有侵犯版权,请及时联系我们。)