作者:张晓军,南京医科大学附属儿童医院影像中心;王峰,南京医科大学附属南京第一医院核医学科
神经母细胞瘤(neuroblastoma,NB)是由形成原始神经脊的胚胎细胞引起,可在整个交感神经系统中的任何地方出现,其自然病史从良性病程到终末期不等;临床表现多样,与肿瘤原发病灶相关,大部分肿瘤(65%)起源于肾上腺。NB约占所有成神经细胞肿瘤的97%,是儿童第3位常见肿瘤,也是儿童最常见的颅外实体瘤。
因为侵袭性较强且诊断时半数已发生转移,NB占所有儿童癌症死亡人数约15%。患者年龄、疾病阶段、影像学定义的风险因子(image defined risk factors,IDRF)、组织病理学结果和多种生物学因素导致NB的术前和治疗风险分级及其不同的预后。课题组前期研究中回顾性总结了南京医科大学附属儿童医院近3年收治的154例NB患者,发现IDRF、年龄与预后具有相关性,可作为判断预后的指标之一。
同时核医学和分子成像对确定NB患者的风险状况至关重要。低风险患者无需过度临床干预、预后最佳,高风险的患者多采用多模式综合治疗,目前有研究显示出核医学疗法对部分高风险NB患者能获得有效的缓解。
1.放射性核素标记123I/131I 间碘苄胍(metaiodobenzylguanidine,MIBG)
MIBG是去甲肾上腺素的功能性类似物,开发于1970年代后期,能被存在于交感神经元中的去甲肾上腺素转运蛋白摄取并累积在细胞质和线粒体中。大多数NB表达去甲肾上腺素转运蛋白,超过90%的NB 对MIBG 高代谢,最大摄取约为给药后24~96 h。碘123(123I)和碘131(131I)均是理想的MIBG标记放射性核素,123I-MIBG是影像诊断的首选放射性药物。
131I衰变的主要射线是发射β粒子,半衰期8.03 d,适用于核素治疗,2019年10月已被美国食品药品监督局(Food and Drug Administration,FDA)批准为嗜铬细胞瘤/副神经节瘤的孤儿药物;123I光子能量为159 keV,理化性质更优良,图像噪声更少,分辨率更高,半衰期(13 h)比131I短得多,明显降低了辐射剂量,也更适合单光子发射型计算机断层显像(single photon emission computed tomography,SPECT),用于NB的诊断。
Liu等通过对比研究发现,123I-MIBG对NB的检出率明显高于131I-MIBG。国际儿童肿瘤合作研究小组专家共识已把123 I-MIBG核素扫描(SPECT或SPECT/CT)列为NB必备影像诊断评估项目。NB评估包括CT或MR成像,以确定肿瘤大小、位置以及IDRF的存在。NB远处转移则必须通过MIBG显像进行评估,肿瘤术前须行MIBG 显像。一项前瞻性多中心研究显示,123I-MIBG诊断NB的灵敏度88%~93%,特异性为83%~92%。MIBG在骨骼和骨髓中无生理摄取,是NB骨转移的灵敏探测技术,灵敏度和特异度分别为90%和100%。123I/131I-MIBG-SPECT 能够提高病变检测率和原发病灶准确定位,对于腹膜后小病灶有很好的诊断价值。
半定量评分系统在高危NB患者预后评估中具有重要意义,法国居里研究所将骨骼分为九个部分并为每个部分制定转移数量和摄取强度的分数,分数总和即为居里评分。与居里评分为2或更低的患者相比,诱导化疗结束后居里评分大于2的患者无事件生存率显著降低。
NB中约10%的MIBG阴性患者,指南建议可使用18-氟脱氧葡萄糖(18F-fluoro-deoxy glucose,18F-FDG)或18F-DO-PA正电子发射断层显像(positron emission tomogra-phy,PET)或99m-亚甲基二膦酸(99mTc-MDP)骨扫描显像来评估疾病。131I-MIBG已成为NB靶向放射性治疗新策略,主要用于常规化疗无效或复发病例。优点是耐受性更好,不会引起恶心和疼痛等不良影响,且可减轻骨转移带来的疼痛。目前正在进行临床试验以研究其作为主要和辅助疗法的用途。
研究表明,131I-MIBG对新发NB患者有更高的缓解率,新诊断为高危NB患者的缓解率高达66%,复发性NB病例缓解率为37%。一项对22例高危Ⅳ期复发/难治性神经母细胞瘤患者的回顾性研究表明,5年总体生存率(overall survival,OS)为37%,中位生存时间为2.8年,治疗后第2 次全身扫描后居里分数下降或无上升是生存率重要预测指标,有助于决定是否行骨髓移植。高剂量131I-MIBG治疗提高神经母细胞瘤的缓解率。
Matthay等进行的Ⅱ期试验,评估了不同剂量131I-MIBG治疗难治性NB的反应,接受0.4 GBq/kg的患者有25%的缓解率,接受0.7 GBq/kg的患者有37%的缓解率。结果显示,剂量增高,缓解率也相应增加,但不良反应也会增加,包括骨髓抑制、短暂性高血压和甲状腺功能减退。
一组针对复发性NB的剂量递增研究表明,高剂量治疗患者80%会经历血小板、中性粒细胞减少。自体干细胞移植可有效规避剂量限制性血液学毒性,可增加剂量带来更高的缓解率。日本的一项大剂量治疗结合自体干细胞移植研究,其剂量为444~666 MBq/kg,1年的无事件生存率(evaluate event-free survival,EFS)和OS分别为42%和58%,5年EFS和OS分别为16%和42%。传统给药方式通常以固定剂量或根据患者体重给药,但另一种方法是根据规定的全身吸收剂量(whole-body absorbed dose,WBD)进行个性化给药方式,可最大限度地提高吸收剂量传递到肿瘤并减少不必要的毒性。
有学者采用个性化用药方式,发现总体缓解率为58%(完全或部分缓解)。联合用药包括与其他化疗药物、放射增敏剂等药物联用。意大利学者对16例复发或难治性NB患者联合顺铂、环磷酰胺治疗,所有患者在第10天接受7 400 MBq(200 mCi)131I-MIBG的治疗,16例患者中有12例(75%)对这种疗法有部分反应,其余4例患者包括3例疾病稳定的患者和1例反应混合的患者,本研究未提供长期随访结果,但是与131I-MIBG单一疗法观察到的<40%的缓解率相比,这种联合疗法缓解率更好,也减少了核素剂量。
有学者使用托泊替康作为放射增敏剂与MIBG 联用安全可行。MIBG 也可作为清髓造血干细胞移植组成部分,一项Ⅱ期多中心研究显示,131I-MIBG与卡铂、依托泊苷和美法仑以及自体干细胞移植联合使用后约10%出现完全治愈或部分好转,对于高危NB患者是可耐受且有效的治疗方法。确定131I-MIBG在联合治疗中的影响,需要进一步前瞻性131I-MIBG联合巩固大剂量化疗与单独大剂量化疗的随机对照试验。
2.放射性核素标记生长抑素类似物(somatostatin analogue,SSA)
NB属于神经内分泌肿瘤,其细胞膜上存在生长抑素受体(somatostatin receptor,SSTR),这是一种糖蛋白,可与核素标记的SSA特异性结合,靶向分子成像和核素治疗。生长抑素受体分5种亚型,尤其是SST2,是神经内分泌肿瘤(neuroendocrine neoplasm,NEN)理想靶标。生长抑素属于肽类激素,含有14个氨基酸,具有生物半衰期短的特性。
目前SSTR主要激动剂奥曲肽(octreotide,OC)新型类似物,包括TOC、NOC、TATE等,其为长效生长抑素类似物,含有8个氨基酸,与NB表面SSTR结合实现成像及治疗。Krenning团队与Sandoz研究所成功开发111In喷曲肽[Indium(111In)Pentetreotide]用于神经内分泌肿瘤影像诊断,很快成为NEN诊断金标准,该药于1994年获得FDA批准。
Schilling等对111In-pentet-reotide与123I-MIBG在NB检测中进行了比较,发现其灵敏度不及123I-MIBG(64%vs. 94%)。不过有学者发现,SST2受体丰富表达与更好的存活率相关,111In-pentetreotide显像法有利于定量评价SST2受体表达水平。68Ga较111In具有更短的半衰期,带来较低的辐射剂量,其注射后45~60 min 可行PET/CT。DOT-ATATE(NETSPOT)对SSTR 更好的亲和力,可获得高质量的图像,病灶检出率更高。
随着新一代生长抑素类似物(DOTA-TOC/NOC)或抑制剂(JR-11)的临床应用,同时更多发射正电子的核素如18F、68Ga和64C的临床应用,68Ga-SSA PET/CT 在原发病灶精确定位,远处转移的探测、分期、再分期起关键作用,并能指导治疗方案选择,已成为胃肠胰神经内分泌肿瘤诊断的金标准。
68Ga-DOTA肽可用于PET成像,灵敏度高于123I-MIBG,且有助于分子分型,准确判断肿瘤表征、预后和选择合适的个性化治疗方法,研究表明68Ga-DOTA 肽PET/CT对病灶的总体灵敏度为94.4%,而123I-MIBG为76.9%。治疗用放射性核素如177Lu或90Y标记SSA对高表达SSTR的肿瘤可以实现放射性核素靶向治疗,称为肽受体放射性核素治疗(peptide receptor radio-nuclide therapy,PRRT),主要用于胃肠胰神经内分泌肿瘤、副神经节瘤和甲状腺髓样癌。放射性核素90Y是纯β发射体,穿透距离9 mm,对较大的病灶治疗效果更好,PET/CT 可用于评价肿瘤的放射性聚集,可测定放射性剂量。
177Lu利用β射线治疗肿瘤,其穿透距离为2 mm,肾毒性和骨髓抑制作用比较小,此外其兼含能量合适的γ射线,可获得高质量图像,用于治疗后成像评价肿瘤的放射性聚集并计算内照射剂量。2018 年美国FDA 批准将177Lu-DOT-ATATE用于神经内分泌肿瘤的临床应用。Gains等对6例NB儿童采用177Lu-DOTATATE治疗9周后随访,5例病情稳定,3例病灶减小,出现轻中度肾脏及血液不良反应,但耐受性良好,安全有效,剂量测定对于儿童人群尤为重要。PRRT可以作为门诊治疗使用,无需前期碘封闭治疗,可减少患儿及其家长负担,必要时可与MIBG互补使用,向NB的不同区域输送靶向放射治疗。
近年来,SSTR特异性拮抗剂的涌现引起了国内外的广泛关注。拮抗剂比激动剂具有潜在的优势,激动剂只能与活性状态生长抑素受体结合,然而在细胞表面上处于失活状态的生长抑素受体多达100倍,而生长抑素受体拮抗剂与凋亡或坏死的肿瘤细胞也能结合,对肿瘤有更好的靶向性,肿瘤检出率更高。SSTR拮抗剂中,JR11在临床前和临床研究中,均展示了良好的应用前景。
Zhu等一组前瞻性研究比较发现,68Ga-DOTA-JRI1比68Ga-DOT-ATATE拥有更高的病灶检出率。Nicolas等比较了177Lu、90Y 和111In-DOTA-JR11 作为潜在的治疗价值,并与177Lu-DOTATATE对比,177Lu-DOTA-JR11(即177Lu-OPS201)表现出更高的肿瘤摄取,更长的肿瘤停留时间和改善的肿瘤-肾剂量比。
选择JR11作为临床显影剂,目前常使用螯合剂NODAGA(68Ga-NODAGA-JR11 即68Ga-OPS202)标记为68Ga 的PET显像剂,以及使用螯合剂DOTA(177Lu-DOTA-JR11即177Lu-OPS201)标记为177Lu的治疗剂。临床诊断和治疗研究表明,与激动剂相比,抑制剂具有更高图像对比度、灵敏度以及更高的肿瘤靶向性。目前SSTR拮抗剂的临床研究多集中于成人神经内分泌肿瘤,尚缺乏儿童NB的进一步研究。
3.放射性核素标记抗体显像和治疗(antibody therapy/immunotherapy)
细胞膜上表达的肿瘤抗原是免疫治疗的潜在靶标,放射性核素标记的抗体结合了免疫疗法和放射疗法的作用,为肿瘤显像和治疗提供了独特的策略。放射性核素发射的α或β粒子引起的交叉火力效应增强了免疫疗法,杀死附近未与抗体结合的肿瘤细胞,达到更好的治疗效果。针对NB存在的神经节苷脂(gangliosides,GD2)的单克隆抗体3F8和CH14.18 已在临床试验中显示出功效。
Cheung等用131I-3F8治疗24例NB患者,其中18例病情稳定无进展。单克隆抗体为鼠源性免疫球蛋白,会发生人抗鼠抗体(human anti-mouse antibody,HAMA)反应。基因工程技术可获得人-鼠嵌合抗体,从而降低抗体异源性。CH14.18为抗GD2的嵌合单克隆抗体,效价更高,免疫源性低,chCE7是另一抗NB抗原gp190蛋白的嵌合单克隆抗体。
Hoefnagel等比较了131I-chCE7与131I-MIBG,发现裸鼠皮下肿瘤治疗中131I-chCE7效果更好,在复发性NB显像中呈互补作用。B7-H3是跨膜糖蛋白,B7蛋白在免疫应答的调节中起着核心作用,是恶性肿瘤免疫治疗的重要靶标。B7-H3在许多肿瘤(包括神经母细胞瘤、黑素瘤、神经胶质瘤、胰腺癌、乳腺癌和卵巢癌)中过表达,而在正常组织中的表达则较低。B7-H3的高表达与各种恶性疾病的预后不良有关。
单克隆抗体8H9是针对B7-H3的鼠类IgG1抗体,经131I标记后已应用于患者的中枢神经系统NB及脑干胶质瘤的治疗。在一项针对80例中枢神经系统NB患者的前瞻性Ⅰ/Ⅱ期研究中,鞘内注射131I-8H9的中位总生存期为58个月,比现有疗法(外部放疗或手术联合化疗)报道的时间长了近10倍,29%的患者存活5年以上。鞘内131I-8H9的中枢神经系统不良反应发生率较低,可能是因为131I的β射线辐射距离较短。放射免疫治疗目前在儿童NB临床研究尚少,随着更多标靶的发现和基因工程技术的发展,进一步采用人源化、小分子嵌合抗体等技术,可能会产生突破性进展。
4. PET/CT、PET/MR一站式成像设备的进展
正电子核素发射断层/计算机断层(PET/CT)为代表的功能显像在NB的诊断中发挥重要作用,并受到临床广泛关注。与SPECT相比,PET技术具有明显优势,如空间分辨率高,肿瘤与背景的对比增加,病灶量化分析,完全断层成像,一次性完成成像的能力,更快的成像速度和降低的辐射,从而提供最佳的一站式成像方案。当前PET放射性药物包括代谢和受体介导的化合物。
代谢化合物包括18F-DOPA、18F-FDG;受体介导的化合物包括68Ga-DOTA肽和生长抑素类似物。18F-FDG是一种葡萄糖类似物,集中在糖酵解部位,包括大多数肿瘤和感染/发炎区域。其对NB的特异性不如MIBG,目前多用于不摄取MIBG 的NB患者,其优势是给药后1 h即可扫描,敏感性更高,且可预测预后情况。
它在NB诊疗中的适应证包括分期、对治疗反应的评估、与治疗后变化相关的残余疾病的分化以及随访。除了病灶鉴定外,18F-FDG还可以用于肿瘤特征和预后评估。晚期或MYCN扩增的患者发现有较高的18F-FDG摄取。已发现转移性病变与正常肝脏之间的最大标准化摄取值(SUVmax)之比可预测生存。最新研究表明,治疗前18F-FDG PET/CT扫描的代谢指标可为NB儿童提供预后信息。
18F-DOPA是多巴胺结构类似物,由于其反映儿茶酚胺代谢能力,目前认为是NB PET显像替代123I-MIBG的最佳药物。与18F-MIBG相比,18F-DOPA提供了更快的成像时间,更高的分辨率和改善的病灶敏感性,18F-DOPA PET/CT对于原发肿瘤、软组织转移和骨及骨髓转移灵敏度分别为94%、92%和100%,与此同时123I-MIBG SPECT/CT 分别为83%、50%和92%,整体18F-DOPA PET/CT 优于123I-MIBG显像。18F-DOPA PET/CT 在NB成像中显示出巨大的前景,但由于成本高和监管问题,目前在全球范围内应用并不广泛。
PET/CT一站式检查方案是当前评估NB分期,表型表征,提供预后信息和确定治疗方案的最佳选择。但其累积电离辐射剂量是应用于儿童群体的主要问题。为了解决这个问题,可针对性地降低注射放射性示踪剂活性,低剂量CT扫描方案以及一站式扫描以进行衰减校正和诊断。MRI是NB中最好的形态学成像手段,它在检测骨髓转移方面显示出很高的灵敏度,较高的软组织分辨率,椎管内肿瘤延伸的准确显示,而且没有电离辐射。
有学者将MRI 和放射学核素MIBG 显像联合应用显示出针对NB 成像较高的灵敏度和特异性。PET/MR 的最新发展提供了最佳替代方法,可提供一站式成像服务,大大降低辐射剂量,并已被证明在小儿恶性肿瘤方面可与PET/CT 相比。但目前尚未见报道PET/MR一站式检查针对NB的临床相关研究,随着肿瘤特异性PET示踪剂的不断发展,这种先进的成像技术在NB中的应用前景被看好。
5.总结与展望
核素显像中,PET/CT一站式检查方案是当前评估NB分期、表型表征、提供预后信息和确定治疗方案的最佳选择,药物以68Ga-DOTA肽更具优势;但限于设备普及性,123I-MIBG SPECT 成像仍为当前首选;PET/MR具有低辐射、高分辨率的优点,将是未来最佳一体化成像替代手段,有赖于广大核医学工作者不断探索研究。
核素治疗中,131I-MIBG个性化用药是当前针对难治性NB的主流靶向放射性治疗策略,肽受体放射性核素治疗(PRRT)有待进一步扩大临床研究。伴随着核医学设备及相应药物、探针的发展,放射性核素诊疗一体化技术将在儿童NB、尤其是复发性和难治性NB分子成像、精准治疗方面发挥更加重要的临床价值。
来源:张晓军,王峰.儿童难治性神经母细胞瘤核素诊疗一体化研究进展[J].南京医科大学学报(自然科学版),2022,42(02):296-301.
(本网站所有内容,凡注明来源为“医脉通”,版权均归医脉通所有,未经授权,任何媒体、网站或个人不得转载,否则将追究法律责任,授权转载时须注明“来源:医脉通”。本网注明来源为其他媒体的内容为转载,转载仅作观点分享,版权归原作者所有,如有侵犯版权,请及时联系我们。)