干眼症治疗:我们拥有的每一种药物、工具和技巧
以下文章来源于Rimonci ,作者Hamza Shah OD等
Rimonci.
Rimonci Capital 专注全球范围内视觉科学领域创新公司的投资、商务拓展以及技术转移
全球干眼症患病率正在上升,其驱动因素包括人口老龄化、基于屏幕的生活方式和其他环境压力源。从先进的生物制剂到创新器械,新疗法的迅速发展常常使已有的治疗方法黯然失色。这给临床医生带来了挑战,他们需要在掌握最新知识的同时保留原有的基础知识。对于作为初级眼保健提供者的视光医生来说,成功的关键在于将传统治疗与新兴治疗结合应用。本文总结了经过时间考验的策略和前沿进展,使临床医生能够自信地应对不断发展的干眼症管理领域。
01
生活方式调整
通常,第一道防线不需要处方、设备或直接干预。生活方式的调整是临床医生可以教育患者纳入日常生活的最简单但最重要的改变之一。健康的抗炎饮食、暂停使用数码设备以及避免接触烟雾等调整,有助于改善任何类型干眼症患者的症状。肥胖和干眼症发病率持续同步上升。研究表明,体力活动减少和久坐时间增加与干眼症相关[1]。肥胖与更高的眼表疾病指数评分、睑板腺功能障碍发生率增加和
仅需两个月的生活方式干预,即可主观改善干眼症症状[4]。建议患者进行锻炼和养成良好的饮食习惯,这不仅有助于缓解干眼症症状,还会对全身健康产生积极影响。
保持健康习惯,如戒烟、适当的化妆卫生和正确的隐形眼镜佩戴习惯,可长期显著缓解干眼症。吸烟作为一种可改变的风险因素,会破坏泪膜稳定性,缩短泪膜破裂时间,并增加角膜染色[4-6]。临床医生应向患者强调戒烟,以改善干眼症症状和整体健康。
同样,化妆与干眼症症状加重相关,尤其是在忽视正确卸妆技巧的人群中,这凸显了教育患者彻底清洁妆容的重要性[8]。隐形眼镜佩戴者停止佩戴的主要原因是一天结束时的不适感,这是由干眼症引起的[9-10]。隐形眼镜佩戴者必须遵守卫生规范,避免加重干眼症。显然,隐形眼镜佩戴者更可能有更差的眼表疾病指数评分、睑板腺功能障碍和缩短的泪膜破裂时间[11、12]。通过解决这些可改变的风险因素,临床医生能够让患者通过自身行为治疗干眼症。
02
眼睑卫生在眼表整体稳态中起着重要作用。睑缘炎症和微生物过度增殖都会导致睑脂质量变化和睑脂分泌减少[13、14]。这些变化导致干眼症最常见的原因之一:睑板腺功能障碍。这反过来会导致泪膜不稳定,导致角膜上皮细胞损伤、高渗和炎症细胞因子增加[15]。这种炎症循环会进一步加剧睑板腺功能障碍和患者的症状[16]
家庭维持治疗是所有患者的良好初步开端,尤其是那些患有睑板腺功能障碍和前部睑缘炎的患者。这包括热敷按摩、眼睑擦拭、眼睑清洁剂和/或眼睑刷。这些在初次诊断后和患者返回进行全面干眼症检查之前是很好的补充。这些治疗也越来越被视为眼部手术成功的关键,应在
03
润滑剂
泪液替代物是眼保健提供者最常为患者开具的治疗方法。它们也是最广泛的类别,有许多不同类型的选择。最常见的是,人工泪液与初始家庭治疗(如前所述)结合使用,帮助患者获得暂时缓解,并养成有助于建立良好眼卫生的长期习惯。大多数人工泪液是水性的,含有增粘剂,可延长眼表的润滑作用。它们还可能包括油、渗透剂、抗氧化剂、防腐剂和电解质[17]。
无防腐剂润滑剂是任何类型干眼症患者的绝佳选择,因为它们可以帮助稳定泪膜而不引起毒性[18]。患有水液缺乏性干眼症的患者可能从中受益最大,因为它们有助于补充减少的泪液。它们还有助于清除有症状患者眼表的过敏原,从而抑制季节性过敏引起的干眼症恶化。
一些研究表明,脂质基人工泪液对蒸发性干眼症患者更有效,并有助于稳定表层脂质层。
除了人工泪液,无防腐剂产品如凝胶、眼膏和羟丙基
04
补充剂
非处方膳食补充剂是干眼症管理中有价值的早期辅助手段。Omega-3 脂肪酸尽管在文献中有不同意见,但具有抗炎作用,并可能改善睑板腺功能障碍患者的睑脂成分[22]。一项分析
尽管 Omega-6 脂肪酸通常被认为具有促炎作用,但并非所有 Omega-6 脂肪酸都是如此。γ- 亚麻酸(GLA)已被发现具有抗炎特性[24]。为了受益于抗炎特性,重要的是将 GLA 与 EPA/DHA 一起服用,因为它可以转化为抗炎分子。
在干眼症补充剂 HydroEye(ScienceBased Health公司)中使用 GLA 的多项对照研究表明,在改善水液缺乏性干眼症、准分子激光角膜切削术后干眼症、干燥性角结膜炎、隐形眼镜引起的干眼症、蒸发性干眼症以及睑板腺功能障碍、轻中度干眼症和女性
一种新的叶黄素、玉米黄质异构体和姜黄素类制剂(Blink NutriTears,博士伦)显示出改善 Schirmer 评分、泪膜破裂时间、渗透压和眼表疾病指数评分的作用。这些抗氧化剂减少氧化应激和炎症,与角膜染色减少和症状缓解相关[32、33]。此类补充剂解决了干眼症的结构性和炎症成分,使其非常有价值,尤其是对任何干眼症患者。
05
冲洗
炎症增加与干眼症密切相关,既是病因也是结果。泪膜和眼表协会 DEWS II 报告精辟地描述了炎症的“恶性循环”如何延续干眼症。因此,泪膜中炎症标志物如 MMP-9 升高是可以预期的。眼表冲洗已显示可降低 MMP-9 并改善干眼症症状。一项随机临床试验表明,与使用人工泪液相比,冲洗眼睛可使眼表疾病指数评分降低68%[34]。另一项研究表明,每天冲洗眼睛可改善眼表疾病指数并降低 MMP-9 水平[35、36]。
图2 Rinsada 设备能够冲洗眼表,包括睑结膜和穹窿部,帮助清除刺激物和炎症标志物
最近推出的一种名为 Rinsada 的冲洗设备还可进行眼睑牵拉,允许将液体加压瞄准穹窿部。与标准冲洗相比,眼睑牵拉下的操作显示 MMP-9 的减少更为显著[37]。
06
眼睑 / 睫毛去角质
眼睑清创、睑板腺挤压和微睑缘去角质是管理前部睑缘炎和睑板腺功能障碍的重要初级门诊治疗方法。眼睑清创涉及使用金铲温和机械去除睑缘的生物膜、角化上皮和碎屑,恢复腺体开口并促进睑脂流动。该治疗与手动睑板腺挤压相结合,被推荐为初次干眼症评估和随访期间的一线干预措施。它们共同提供了关于腺体阻塞严重程度、生物膜负荷和睑脂质量的关键诊断见解,有助于制定进一步的治疗方案。
图3 泪膜皂化是睑缘炎和睑板腺功能障碍等疾病中细菌过度生长的关键指标
微睑缘去角质作为一种先进的清创形式,通过彻底去除睑缘角质,帮助清除生物膜和前部睑缘炎积聚,从而提高疗效[38]。一项临床研究表明,微睑缘去角质显著改善了中重度睑板腺功能障碍患者的主观症状,提高了睑板腺分泌质量,并减少了炎症生物标志物如基质 MMP-9[39]。微睑缘去角质是治疗睑板腺功能障碍和前部睑缘炎患者的早期良好工具。
07
泪小点栓塞
泪小点栓塞曾经是干眼症管理的主要手段,现在被泪膜和眼表协会 DEWS II 视为二线治疗。当泪液量不足时(常见于水液缺乏性干眼症),就需要采用泪小点栓塞。它可以将天然泪液保留在眼表,改善泪膜质量、数量和稳定性。泪小点栓塞可以通过多种方法实现,包括永久性栓塞、可溶解栓塞(尤其是新型锥形180天栓塞,Oasis Medical公司)、由交联透明质酸制成的泪小管凝胶(Lacrifill,Nordic Pharmaceuticals公司)或烧灼术。在控制炎症后,泪小点栓塞可改善主观症状、眼部染色、泪膜稳定性并减少人工泪液的使用[40]。
图4 所示硅胶泪点塞已安装到位,用于保护泪膜
08
眼睑密封
上下眼睑的适当密封对于维持夜间眼表湿润至关重要,尤其是在夜间泪液分泌已经减少的情况下[41]。在许多患者中,眼睑可以闭合但无法密闭,导致水液密封效率低下。这与夜间兔眼不同,后者在
诊断由早晨症状做出,因为这些患者醒来时会报告问题[43]。保湿或眼睑闭合疗法,如眼睑胶带或密封剂(SleepTite,SleepRite)、保湿护目镜和眼睑配重,可帮助患者防止夜间干燥。解决夜间暴露问题并与白天治疗相结合,确实可以改善患者的生活质量。
09
类固醇
皮质类固醇是干眼症长期管理中有价值的短期辅助手段,尤其是在眼部炎症加剧期间,如干眼症发作或更严重的初始表现。这种炎症成分在水液缺乏性和蒸发性干眼症中均可见,导致不适、充血和上皮损伤等症状[44]。类固醇通过抑制细胞膜上的磷脂酶 A2 发挥抗炎作用,从而阻断花生四烯酸级联反应并减少促炎细胞因子的释放[45]。它们相对快速的作用使其成为急性发作或与眼表免疫调节剂(如环孢素、 lifitegrast)等持续疗法衔接的理想选择。
泪液渗透压、MMP-9 检测等客观指标可帮助识别有活动性炎症的患者,而角膜 / 结膜染色则从视觉上证实炎症损伤。临床研究表明,短期使用类固醇可改善眼表疾病指数评分、染色严重程度、泪膜稳定性、睑脂质量和睑板腺可挤压性[46]。然而,由于长期使用类固醇存在
10
免疫调节剂
通过靶向炎症介质来调节生理免疫反应,以减少眼表组织损伤,这二十多年来一直是干眼症处方药治疗的支柱[47]。这类药物包括环孢素和 lifitegrast,可在干眼症2期(中度严重程度)尽早开始使用[48]。尽管它们的机制不同,但都能减少炎症并帮助恢复眼表稳态。
临床证据支持其在初始起效期后显现疗效。一项0.05%环孢素(Restasis,艾伯维公司)的研究表明,两到三个月后球结膜杯状细胞密度增加,增强了对泪膜稳定性至关重要的粘蛋白产生[49]。更高浓度的环孢素包括0.09%的纳米胶束载体(Cequa,太阳制药),可显著提高角膜中的药物浓度[50]。
同样,OPUS 试验显示,与安慰剂相比,lifitegrast 显著改善了干眼症的症状和体征[51]。这些药物对与慢性炎症相关的水液缺乏性干眼症特别有效,如干燥综合征或自身免疫相关性干眼症。
由于其起效延迟,免疫调节剂通常与短期皮质类固醇联合使用以快速控制症状 —— 这是一种协同策略,可解决急性发作,同时建立长期抗炎环境。
最新的免疫调节剂(Vevye,Harrow公司)将更高浓度的环孢素(0.1%)与全氟丁基戊烷载体结合;与以前的环孢素配方一样,它不含防腐剂。然而,这种特殊配方不含水,因此没有 pH 值,使其更加舒适。它还被证明可使眼表的环孢素浓度比0.05%环孢素(Restasis)高22倍[52]。在临床研究中,它在第15天就显示出总
11
脂质稳定剂
蒸发性干眼症的典型问题是脂质层不足且不稳定。较新的药物全氟己基辛烷(Meibo,博士伦公司)模仿人工泪液,但采用不同的机制缓解干眼症症状,通过补充脂质层来稳定泪膜[54]。通过在眼表形成保护屏障,Meibo 有助于减少泪液蒸发并保护眼睛免受环境压力源的影响。
图5 Miebo 的有效成分全氟己基辛烷在滴注后会与空气和脂质分子结合。它通过这种方式建立自身的屏障来弥补脂质分泌不足导致的泪液不稳定
FDA 试验表明,使用全氟己基辛烷八周内角膜染色和干眼症症状显著改善[55]。在第15天和第57天进行测量;第15天角膜荧光素染色的改善是使用载体疗法的两倍[56、57]。第15天和第57天眼睛干燥症状也比使用载体疗法改善了1.5倍。这种干眼症药物也被发现是市场上耐受性最好的,614名患者中只有1人因不良事件退出研究,3人注意到轻微灼烧感,13人在滴注时注意到轻微模糊。
全氟己基辛烷独特的物理化学性质使其对蒸发性干眼症患者特别有益,提供持续缓解,同时保持视力清晰。
12
抗寄生虫药
图5 蠕形螨感染出现在睫毛根部,患者向下凝视
睑缘炎是一种进行性慢性眼睑炎症性疾病,导致眼表刺激和继发性干眼症[58]。高达50%的慢性睑缘炎病例涉及寄生虫感染(如蠕形螨),通过睑板腺的机械阻塞、直接组织损伤和细菌过度生长加剧炎症[59-61]。蠕形螨通过其外骨骼、废物产物和促进微生物增殖引发免疫反应,形成炎症、腺体功能障碍甚至腺体丢失的循环[62、63]。蠕形螨感染也与眼酒渣鼻相关,表明存在共同的致病机制,如免疫失调或微生物群失调,这可能导致面部和眼部炎症表现。
我们现在有幸获得0.25%洛替拉纳滴眼液(Xdemvy,Tarsus Pharmaceuticals公司),这是一种选择性杀虫剂,通过诱导麻痹和死亡来靶向蠕形螨[64]。临床试验数据表明,每天两次使用六周可实现近乎完全的螨虫清除,并显著减少睫毛周围的袖套样改变[65]。通过消除寄生虫负担,洛替拉纳破坏了炎症级联反应,使腺体功能和泪膜稳定性得以恢复,使患者能够体验到睑缘炎症和瘙痒、灼烧等症状的减轻[66]。
最近的研究表明,洛替拉纳可能有助于管理与蠕形螨睑缘炎相关的睑板腺功能障碍,在第85天使产生液体分泌的睑板腺数量增加78%,并在波动视力、灼烧、瘙痒和发红方面有统计学显著改善。
茶树油作为历史上治疗蠕形螨的主要手段,在轻度病例或资源有限的情况下仍然是一种选择,用于擦拭或稀释溶液[67]。然而,需要注意的是,它可能对睑板腺有一定程度的毒性[68]。 洛替拉纳和茶树油这两种疗法提供了一种有针对性的方法来减少蠕形螨,同时支持眼表和附属器健康。应用于眼睑的秋葵提取物也显示出控制蠕形螨感染的良好疗效。一些研究还探讨了酯酶抑制剂、硫软膏和汞软膏等药物的作用,但这些在临床上很少使用。
一种不会让患者接触潜在毒性的良好长期维持疗法是含有麦卢卡提取物、芦荟和椰子油的眼睑擦拭剂(MyboClean,Denali Ocular Creations)。麦卢卡是一种天然抗寄生虫剂,已知对蠕形螨睑缘炎有效。此外,椰子油也被发现是有效的[69]。
患有眼酒渣鼻的患者也可能出现眼表效应。在此类患者中,将1%
13
隐形眼镜
软性隐形眼镜在管理各种角膜并发症(包括干眼症)中起着至关重要的作用。绷带镜,尤其是由硅水凝胶(SiHy)制成的绷带镜,在化学烧伤、史蒂文斯 - 约翰逊综合征、复发性角膜糜烂、擦伤和术后并发症等眼表疾病中提供舒适和保护[70、71]。
一项关于干燥综合征患者的研究表明,硅水凝胶镜片与自体血清泪液一样有效,两组在视力、眼表疾病指数评分和泪膜破裂时间方面均有显著改善。值得注意的是,隐形眼镜组在六周治疗后角膜染色评分更低[72]。另一项研究强调,连续佩戴硅水凝胶镜片一个月可减少干眼症症状并改善视力,突显了它们的治疗潜力[73]。
巩膜镜近年来已成为管理严重干眼症的另一基石,尤其是在暴露性角膜病变、史蒂文斯 - 约翰逊综合征、干燥综合征和屈光术后干眼症中[74、75]。根据 DEWS II 指南,巩膜镜片在治疗方法的第3步推荐,用于晚期或难治性病例。临床研究表明,使用巩膜镜片可改善眼表疾病指数评分、角膜染色和症状缓解[76、77]。通过在角膜上拱起并维持液体储库,这些镜片提供了无与伦比的保护和保湿作用,使其成为严重眼表疾病患者的重要工具。
14
口服药物
口服
15
光 / 能量疗法
干眼症的能量疗法利用光或射频脉冲靶向治疗睑板腺功能障碍和蒸发性干眼症。强脉冲光设备发射广谱光,而低强度激光疗法使用单一波长(通常为红色或蓝色)。热脉动设备施加热量和压力,射频治疗则通过产生电磁波产生局部热量。这些治疗方式可改善睑缘健康,缓解炎症和睑板腺功能障碍,有效治疗干眼症。睑板腺功能障碍和酒渣鼻患者常见的睑缘毛细血管扩张会加剧炎症和腺体功能障碍,这进一步凸显了能量疗法在治疗与睑板腺功能障碍和眼睑疾病相关的蒸发性干眼症中的重要性[87、88]。
强脉冲光有一个显著局限性 —— 其疗效和安全性受皮肤色素沉着影响,主要推荐用于 Fitzpatrick 皮肤类型 I-III 型的患者。较新型的强脉冲光系统配备自冷却探头,无需耦合凝胶,因此在某些情况下可用于 IV 型甚至偶尔 V 型皮肤患者。肤色较深(V-VI 型)的患者在治疗部位有色素脱失的风险,对这些患者而言,低强度激光疗法、射频和热脉动等替代疗法更为有效。
强脉冲光可产生多种治疗效果,包括浅表血管血栓形成、睑脂液化、光生物调节、减少蠕形螨和减轻眼表炎症[89-93]。同样,低强度激光疗法通过其光生物调节和抗炎特性,在临床前和临床研究中已证明对眼表疾病有效[94、95]。
强脉冲光与低强度激光疗法联合使用可进一步提升疗效,临床试验表明,联合治疗可显著改善眼表疾病指数评分、泪膜破裂时间、Schirmer 评分和睑板腺分泌物质量[96、97]。尽管对广泛的干眼症患者均有益,但这些疗法对睑板腺功能障碍和眼酒渣鼻患者尤为有效,可同时解决腺体阻塞和炎症问题。
射频系统通过振荡电场产生电磁波,使组织颗粒带电,导致颗粒振动并在组织内产生热量。当应用于睑缘时,射频能量可靶向加热睑板腺,通过疏通阻塞的腺体、刺激热
图6 诊所内加热并挤压睑板腺的手术越来越受欢迎。从左到右:LipiFlow、iLux 和 TearCare
热挤压术(TearCare,Sight Sciences)和热脉动术(LipiFlow,强生;iLux,爱尔康)是另外两种用于治疗睑板腺功能障碍的门诊疗法。热挤压术包括加热睑缘后手动挤压腺体以清除阻塞物,而热脉动术则结合加热和脉动压力以同时按摩和疏通腺体[99]。
对照研究表明,与传统家庭疗法相比,热脉动术可改善腺体分泌、泪膜破裂时间、Schirmer 试验评分和症状缓解[100]。热挤压术和热脉动术的治疗反应相似[101],但 TearCare 系统的热挤压术研究显示,与每日两次使用
16
羊膜
对于复杂眼表疾病患者,羊膜是恢复眼表稳态和促进愈合的重要治疗工具,具有机械保护、抗炎、抗瘢痕和促再生特性[103、104]。羊膜有冷冻保存、脱水和粉末等多种形式。
羊膜对于严重水液缺乏型干眼症、史蒂文斯 - 约翰逊综合征、丝状角膜炎、神经麻痹性角膜炎、角膜缘干细胞缺乏、复发性角膜糜烂和暴露性角膜病变的患者尤其有益[105-107]。临床研究表明,冷冻保存羊膜(Prokera,Biotissue)可促进角膜神经再生并缓解角膜炎[108]。脱水羊膜可显著改善眼表疾病指数评分、角膜神经密度和上皮染色[109]。最近推出的无环冷冻保存羊膜(CAM 360,BioTissue)还可与一次性胶原盾(Oasis Medical)联合使用。
羊膜为严重眼表疾病的管理提供了多功能治疗方案,是任何干眼症诊所的重要手段。
17
三叉神经副交感通路调节约三分之一的基础泪液分泌[110]。激活该通路可通过刺激鼻泪反射的机电设备或使用
18
再生疗法 / 生物制剂
西奈吉明(Cenegermin)是一种 FDA 批准的用于神经麻痹性角膜炎的外用生物制剂,通过恢复角膜神经功能和上皮完整性促进角膜愈合。临床试验显示,约70%的患者在使用八周内可实现角膜完全愈合,并恢复敏感性、透明度和结构完整性[113、114]。
对于水液缺乏性干眼症,
自体血清泪液和富血小板血浆泪液是来源于血液的疗法,在干眼症治疗中具有不同作用。血清泪液在 pH、渗透压和生物力学特性上模拟天然泪液,有助于治疗自身免疫性干眼症、干燥性角结膜炎和炎症性干眼症[119、120]。最常用浓度为40%,每日4次至每2小时1次。
富血小板血浆泪液富含浓缩血小板中的生长因子,可加速蒸发性干眼症、水液缺乏性干眼症和神经麻痹性角膜炎的组织修复[121-124]。富血小板血浆卓越的生长因子谱使其对严重眼表修复更有效,而血清泪液通常更适用于涉及持续性上皮缺损、干燥性角结膜炎、神经麻痹性角膜炎或角膜缘干细胞缺乏的晚期病例[125]。
19
N -
作为黏液溶解剂,N - 乙酰半胱氨酸可有效分解异常黏液丝,是丝状角膜炎的理想疗法[126、127]。其还具有抗炎特性,源于其中和自由基和抑制活性酸代谢物的能力[128]。临床研究强调了 N - 乙酰半胱氨酸在管理以黏液分泌增多为特征的中重度干眼症中的价值,其可减少黏液积聚、促进角膜上皮化并改善症状[129]。通过靶向结构和炎症成分,N - 乙酰半胱氨酸为丝状角膜炎和复杂干眼症提供了治疗益处。
然而,该药物需要每日4次给药且有难闻气味,可能导致患者依从性差,但耐受治疗的患者可取得良好效果。
20
手术 / 操作干预
睑板腺导管内探查术基于以下理论:睑板腺功能障碍涉及导管周围纤维化和导管狭窄,通过探针机械扩张腺体开口和导管可能恢复腺体功能。然而,支持睑板腺导管内探查术的临床证据有限,现有研究缺乏随机对照试验且结果不一致[130]。尽管如此,临床仍将睑板腺导管内探查术用于睑板腺功能障碍的治疗,但其疗效和在治疗流程中的作用仍存疑问。
睑缘缝合术通过缝合、粘合剂或肉毒杆菌毒素诱导提上睑肌麻痹来部分或完全闭合眼睑,缩短睑裂,减少环境暴露,增强眼表润滑和保护[131]。该手术通常适用于严重干眼症患者(常伴有持续性上皮缺损、角膜溃疡和角膜穿孔风险),但可能严重限制视力。在一项关于不愈合持续性上皮缺损的研究中,睑缘缝合术的完全愈合率超过75%[132、133]。
结构性异常(如睑外翻、睑内翻、松弛性眼睑、萨尔茨曼结节、
干眼症可因良性特发性眼睑
21
未来疗法
尽管现有治疗选择丰富,研究仍在探索干眼症的新治疗途径。以下是几种特别值得关注的研发中产品:
Eye Lipid Mobilizer:一种设计用于门诊和家庭使用的机械面罩,通过结合靶向热和振动能量,促进阻塞睑脂的液化和排出,改善腺体功能和泪膜稳定性。
Acoltremon:一种选择性瞬时受体电位 Melastatin 8(TRPM8)激动剂,激活与三叉神经信号传导相关的冷敏离子通道[137]。TRPM8 受体对温度、渗透压或 Acoltremon 等药理激动剂作出反应,触发膜去极化和动作电位,刺激基础泪液分泌[138]。临床试验显示,其可改善主观症状、增加 Schirmer 评分并减少眼表染色[139],对水液缺乏性干眼症、暴露性角膜病变或术后干眼症患者尤其有益。
Reproxalap:靶向活性醛类物质,这是与眼表疾病相关的促炎信号级联反应的关键介质[140]。在干燥综合征、前葡萄膜炎、
丝蛋白衍生物(SDP-4):作为首款基于蛋白质的治疗剂,除了通过抑制 NFkB 显示强抗炎作用外,还具有黏蛋白模拟特性。临床试验中,丝蛋白衍生物在第28天和第56天显著增加泪膜破裂时间(与对照组相比,p<0.05),并在第84天根据 SANDE 视觉模拟量表评分使患者症状缓解46%。中重度干眼症患者的缓解程度显著高于轻度患者[146]。所有治疗组耐受性良好,停药率为2.6%。其治疗结膜染色的能力和100%天然成分尤其令人印象深刻。
总结
干眼症是一种复杂的多因素疾病,需要精准的临床治疗方法。成功管理的关键在于识别潜在病因并制定个性化治疗方案。随着新疗法的不断涌现,临床医生必须优先采用循证的阶梯式治疗方案,同时灵活适应新疗法。通过了解现有治疗并将其适配于特定患者,干眼症管理可变得更加高效和精准。
作者信息和参考文献
作者简介:Dr. Shah:毕业于伊利诺伊视光学院,在印第安纳州卡梅尔的视力与干眼症研究中心完成眼病住院医师培训,现任休斯顿大学视光学院临床助理教授,美国视光学院院士,主要研究方向为围手术期护理、
Dr. Karpecki:肯塔基眼科学院角膜和外眼病主任,《视光评论》首席临床编辑,新技术与治疗会议及眼表研讨会主席,在视光临床教育领域颇具影响力,为包括本文讨论内容在内的多家眼科机构提供咨询。参考文献:
1. Kawashima M, Uchino M, Yokoi N, et al. The association between dry eye disease and physical activity as well as sedentary behavior: results from the Osaka study. J Ophthalmol. 2014;2014:943786.
2. Baser G, Yildiz N, Calan M. Evaluation of meibomian gland dysfunction in polycystic ovary syndrome and obesity. Curr Eye Res. 2017;42:661-665.
3. Kawashima M, Uchino M, Yokoi N, et al. Associations between subjective happiness and dry eye disease: a new perspective from the Osaka study. PLoS One. 2015;10(4):e0123299.
4. Kawashima M, Sano K, Takechi S, Tsubota K. Impact of lifestyle intervention on dry eye disease in office workers: a randomized controlled trial. J Occup Health. 2018;60(4):281-288.
5. Mohidin N, Jaafar AB. Effect of smoking on tear stability and corneal surface. J Curr Ophthalmol. 2020;32:232-237.
6. Bhutia P, Sen S, Nath T, Shamshad MA. The effect of smoking on ocular surface and tear film based on clinical examination and optical coherence tomography. Indian J Ophthalmol. 2021;69:1693-1696.
7. Yoon K-C, Song B-Y, Seo M-S. Effects of smoking on tear film and ocular surface. Korean J Ophthalmol. 2005;19:18-22.
8. O’Dell L, Periman L, Sullivan A, et al. An evaluation of cosmetic wear habits correlated to ocular surface disease symptoms. Invest Ophthalmol Vis Sci. 2017;58(8):495.
9. Begley CG, Chalmers RL, Mitchell GL, et al. Characterization of ocular surface symptoms from optometric practices in North America. Cornea. 2001;20:610-618.
10. Riley C, Young G, Chalmers R. Prevalence of ocular surface symptoms, signs and uncomfortable hours of wear in contact lens wearers: the effect of refitting with daily-wear silicone hydrogel lenses (senofilcon a). Eye Contact Lens. 2006;32:281-286.
11. Henriquez AS, Korb DR. Meibomian glands and contact lens wear. Br J Ophthalmol. 1981;65:108-111.
12. Craig JP, Willcox MD, Argueso P, et al. The TFOS International Workshop on Contact Lens Discomfort: report of the contact lens interactions with the tear film subcommittee. Invest Ophthalmol Vis Sci. 2013;54:TFOS123-TFOS156.
13. Shimazaki J, Sakata M, Tsubota K. Ocular surface changes and discomfort in patients with meibomian gland dysfunction. Arch Ophthalmol. 1995;113:1266-1270.
14. Lee SH, Oh DH, Jung JY, et al. Comparative ocular microbial communities in humans with and without blepharitis. Investig Ophthalmol Vis Sci. 2012;53:5585-5593.
15. Mizoguchi S, Iwanishi H, Arita R, et al. Ocular surface inflammation impairs structure and function of meibomian gland. Exp Eye Res. 2017;163:78-84.
16. Baudouin C, Messmer EM, Aragona P, et al. Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction. Br J Ophthalmol. 2016;100(3):300-306.
17. Jones L, Downie LE, Korb D, et al. TFOS DEWS II management and therapy report. Ocul Surf. 2017;15(3):575-628.
18. Gomes JAP, Azar DT, Baudouin C, et al. TFOS DEWS II iatrogenic report. Ocul Surf. 2017;15(3):511-538.
19. Kojima T, Nagata T, Kudo H, et al. The effects of high molecular weight hyaluronic acid eye drop application in environmental dry eye stress model mice. Int J Mol Sci. 2020;21(10):3516.
20. Gomis A, Pawlak M, Balazs EA, et al. Effects of different molecular weight elastoviscous hyaluronan solutions on articular nociceptive afferents. Arthritis Rheumatol. 2004;50(1):314-326.
21. Tong L, Petznick A, Lee S, et al. Choice of artificial tear formulations for patients with dry eye: where do we start? Cornea. 2012;31 Suppl 1:S32-S36.
22. Omega-3 fatty acids fact sheet for consumers. National Institutes of Health. Updated July 18, 2022. Accessed March 14, 2024.
23. Sullivan BD, Cermak JM, Sullivan RM, et al. Correlations between nutrient intake and the polar lipid profiles of meibomian gland secretions in women with Sjögren’s syndrome. Adv Exp Med Biol. 2002;506(Pt A):441-447.
24. Vasquez A. Reducing pain and inflammation naturally. Part II: new insights into fatty acid supplementation and its effect on eicosanoid production and genetic expression. Nutr Perspect. 2005;28(1):5-16.
25. Barabino S, et al. Systemic linoleic and gamma-linolenic acid therapy in dry-eye syndrome with inflammatory component. Cornea. 2003;22(2):97-101.
26. Macri A, Giuffrida S, Amico V, et al. The effect of LA and GLA on tear production, tear clearance and on the ocular surface after PRK surgery. Graefes Arch Clin Exp Ophthalmol. 2003;241:561-566.
27. Aragona P, et al. Systemic omega-6 essential fatty acid treatment and PGE1 tear content in Sjogren’s syndrome patients. Invest Ophthalmol Vis Sci. 2005;46:4474-4479.
28. Kokke KH, Morris JA, Lawrenson JG. Oral omega-6 essential fatty acid treatment in contact lens associated dry eye. Contact Lens Anterior Eye. 2008;31:141-146.
29. Pinna A, Piccinini P, Carta F. Effect of oral linoleic and gamma-linolenic acid on meibomian gland dysfunction. Cornea. 2007;26:260-264.
30. Brignole-Baudouin F, Baudouin C, Aragona P, et al. A multicentre, double-masked, randomized, controlled trial assessing the effect of oral supplementation of omega-3 and omega-6 fatty acids on a conjunctival inflammatory marker in dry eye patients. Acta Ophthalmol. 2007;89:e591-e597.
31. Sheppard J, Singh R, et al. Long-term supplementation with n-6 and n-3 PUFAs improves moderate-to-severe keratoconjunctivitis sicca: a randomized double-blind clinical trial. Cornea. 2013;32(10):1297-1304.
32. Gioia N, Gerson J, Ryan R, et al. A novel multi-ingredient supplement significantly improves ocular symptom severity and tear production in patients with dry eye disease: results from a randomized, placebo-controlled clinical trial. Front Ophthalmol. 2024;4:1362113.
33. Efficacy and safety of Nutritears in adults with dry eye syndrome. NCT05481450. Available from: https://clinicaltrials.gov/study/NCT05481450.
34. Diaz-Llopis M, Pinazo-Duran MD, Diaz-Guiñon L, et al. A randomized multicenter study comparing seawater washes and carmellose artificial tears eyedrops in the treatment of dry eye syndrome. Clin Ophthalmol. 2019;13:483-490.
35. Li X, Kang B, Eom Y, et al. The protective effect of an eye wash solution on the ocular surface damage induced by airborne carbon black exposure. Cornea. 2020;39(8):1040-1047.
36. Kim A, Postnikoff CK, Nichols KK. Non-pharmaceutical eye wash may reduce matrix metalloprotease-9 (MMP-9) in dry eye. Invest Ophthalmol Vis Sci. 2020;61(7):100.
37. Mayer N, Kondapalli SSA, Venkateswaran N, Saeed HN. The efficacy of an irrigating eyelid retractor-facilitated ocular rinse on MMP-9 expression and dry eye disease. Adv Ophthalmol Pract Res. 2024;4(3):142-146.
38. Epstein IJ, Rosenberg E, Stuber R, et al. Double-masked and unmasked prospective study of terpinen-4-ol lid scrubs with microblepharoexfoliation for the treatment of Demodex blepharitis. Cornea. 2020;39(4):408-416.
39. Moon SY, Han SA, Kwon HJ, et al. Effects of lid debris debridement combined with meibomian gland expression on the ocular surface MMP-9 levels and clinical outcomes in moderate and severe meibomian gland dysfunction. BMC Ophthalmol. 2021;21:175.
40. Yung YH, Toda I, Sakai C, et al. Punctal plugs for treatment of post-LASIK dry eye. Jpn J Ophthalmol. 2012;56:208-213.
41. Baum J. A relatively dry eye during sleep. Cornea. 1990;9:1.
42. Gauba V, Curtis ZJ. Sleep position and the ocular surface in a high airflow environment. Saudi J Ophthalmol. 2014;28:66-68.
43. Blackie CA, Korb DR. A novel lid seal evaluation. Eye Contact Lens. 2015;41(2):98-100.
44. Baudouin C. The pathology of dry eye. Surv Ophthalmol. 2001;45(Suppl 2):211-220.
45. Errasfa M, Russo-Marie F. A purified lipocortin shares the anti-inflammatory effect of glucocorticosteroids in vivo in mice. Br J Pharmacol. 1989;97:1051-1058.
46. Lee H, Chung B, Kim KS, et al. Effects of topical loteprednol etabonate on tear cytokines and clinical outcomes in moderate and severe meibomian gland dysfunction: randomized clinical trial. Am J Ophthalmol. 2014;158(6):1172-1183.
47. Radomska-Leśniewska DM, Skopiński P, Bałan BJ, et al. Angiomodulatory properties of Rhodiola spp. and other natural antioxidants. Centr Eur J Immunol. 2015;40:249-262.
48. Behrens A, Doyle JJ, Stern L, et al. Dysfunctional tear syndrome: a Delphi approach to treatment recommendations. Cornea. 2006;25:900-910.
49. Pflugfelder SC, De Paiva CS, Villarreal AL, et al. Effects of sequential artificial tear and cyclosporine emulsion therapy on conjunctival goblet cell density and transforming growth factor-beta2 production. Cornea. 2008;27:64-69.
50. Cholkar K, Gilger BC, Mitra AK. Topical, aqueous, clear cyclosporine formulation design for anterior and posterior ocular delivery. Transl Vis Sci Technol. 2015;4(3):1-16.
51. Holland EJ, Luchs J, Karpecki PM, et al. Lifitegrast for the treatment of dry eye disease: results of a phase III, randomized, double-masked, placebo-controlled trial (OPUS-3). Ophthalmology. 2016.
52. Agarwal P, Scherer D, Günther B, Rupenthal ID. Semifluorinated alkane based systems for enhanced corneal penetration of poorly soluble drugs. Int J Pharm. 2018;538(1-2):119-129.
53. Wirta DL, Torkildsen GL, Moreira HR, et al. A clinical phase II study to assess efficacy, safety and tolerability of water-free cyclosporine formulation for treatment of dry eye disease. Ophthalmology. 2019;126(6):792-800.
54. Agarwal P, Khun D, Krösser S, et al. Preclinical studies evaluating the effect of semifluorinated alkanes on ocular surface and tear fluid dynamics. Ocul Surf. 2019;17(2):241-249.
55. Tauber J, Wirta DL, Sall K, et al. A randomized clinical study (SEECASE) to assess efficacy, safety and tolerability of NOV03 for treatment of dry eye disease. Cornea. 2021;40(9):1132-1140.
56. Tauber J, Berdy GJ, Wirta DL, et al. NOV03 for dry eye disease associated with meibomian gland dysfunction: results of the randomized phase 3 GOBI study. Ophthalmology. 2023;130(5):516-524.
57. Sheppard JD, Kurata F, Epitropoulos AT, et al. NOV03 for signs and symptoms of dry eye disease associated with meibomian gland dysfunction: the randomized phase 3 MOJAVE study. Am J Ophthalmol. 2023;252:265-274.
58. American Academy of Ophthalmology Cornea/External Disease Panel. Preferred practice pattern guidelines. Blepharitis. 2018; American Academy of Ophthalmology, San Francisco, CA, USA.
59. Zhao Y-E, Wu L-P, Hu L, Xu J-R. Association of blepharitis with Demodex: a meta-analysis. Ophthalmic Epidemiol. 2012;19(2):95-102.
60. Liu J, Sheha H, Tseng SC. Pathogenic role of Demodex mites in blepharitis. Curr Opin Allergy Clin Immunol. 2010;10:505-510.
61. Hung KH, Lan YH, Lin JY, et al. Potential role and significance of ocular demodicosis in patients with concomitant refractory herpetic keratitis. Clin Ophthalmol. 2020;14:4469-4482.
62. Fromstein SR, Harthan JS, Patel J, Opitz DL. Demodex blepharitis: clinical perspectives. Clin Optom. 2018;10:57-63.
63. Cheng S, Zhang M, Chen H, Fan W, Huang Y. The correlation between the microstructure of meibomian glands and ocular Demodex infestation: a retrospective case-control study in a Chinese population. Medicine (Baltimore). 2019;98:e15595.
64. Dourmishev AL, Dourmishev LA, Schwartz RA. Ivermectin: pharmacology and application in dermatology. Int J Dermatol. 2005;44:981-988.
65. Gaddie IB, Donnenfeld ED, Karpecki P, et al. Lotilaner ophthalmic solution 0.25% for Demodex blepharitis: randomized, vehicle-controlled, multicenter, phase 3 trial (Saturn-2). Ophthalmology. 2023;130(10):1015-1023.
66. Li J, Wei E, Reisinger A, et al. Comparison of different anti-Demodex strategies: a systematic review and meta-analysis. Dermatology. 2023;239(1):12-31.
67. Kheirkhah A, Blanco G, Casas V, Tseng SC. Fluorescein dye improves microscopic evaluation and counting of Demodex in blepharitis with cylindrical dandruff. Cornea. 2007;26:697-700.
68. Chen D, Wang J, Sullivan DA, et al. Effects of terpinen-4-ol on meibomian gland epithelial cells in vitro. Cornea. 2020;39(12):1541-1546.
69. Wong K, Flanagan J, Jalbert I, Tan J. The effect of Blephadex eyelid wipes on Demodex mites, ocular microbiota, bacterial lipase and comfort: a pilot study. Cont Lens Anterior Eye. 2019;42(6):652-657.
70. Montero J, Sparholt J, Mely R. Retrospective case series of therapeutic applications of a lotrafilcon A silicone hydrogel soft contact lens. Eye Contact Lens. 2003;29(1 Suppl):S54-S56.
71. Rashad R, Weed MC, Quinn N, Chen VM. Extended wear bandage contact lenses decrease pain and preserve vision in patients with epidermolysis bullosa: case series and review of literature. Ocul Immunol Inflamm. 2020;28:379-383.
72. Li J, Zhang X, Zheng Q, et al. Comparative evaluation of silicone hydrogel contact lenses and autologous serum for management of Sjogren syndrome-associated dry eye. Cornea. 2015;34:1072-1078.
73. Russo PA, Bouchard CS, Galasso JM. Extended-wear silicone hydrogel soft contact lenses in the management of moderate to severe dry eye signs and symptoms secondary to graft-versus-host disease. Eye Contact Lens. 2007;33:144-147.
74. Bavinger JC, DeLoss K, Mian SI. Scleral lens use in dry eye syndrome. Curr Opin Ophthalmol. 2015;26:319-324.
75. Chaudhary S, Ghimire D, Basu S, et al. Contact lenses in dry eye disease and associated ocular surface disorders. Indian J Ophthalmol. 2023;71:1142-1153.
76. La Porta Weber S, Becco de Souza R, Gomes JAP, Hofling-Lima AL. The use of the Esclera scleral contact lens in the treatment of moderate to severe dry eye disease. Am J Ophthalmol. 2016;163:167-173.e1.
77. Moon J, Lee SM, Hyon JY, et al. Large diameter scleral lens benefits for Asians with intractable ocular surface diseases: a prospective, single-arm clinical trial. Sci Rep. 2021;11:2288.
78. Greene JB, Jeng BH, Fintelmann RE, Margolis TP. Oral azithromycin for the treatment of meibomitis. JAMA Ophthalmol. 2014;132(1):121-122.
79. Igami TZ, Holzchuh R, Osaki TH, et al. Oral azithromycin for treatment of posterior blepharitis. Cornea. 2011;30(10):1145-1149.
80. Lindsley K, Matsumura S, Hatef E, et al. Interventions for chronic blepharitis. Cochrane Database Syst Rev. 2012;2012(5):Cd005556.
81. De Benedetti G, Vaiano AS. Oral azithromycin and oral doxycycline for the treatment of meibomian gland dysfunction: a 9-month comparative case series. Indian J Ophthalmol. 2019;67(4):464-471.
82. Kashkouli MB, Fazel AJ, Kiavash V, et al. Oral azithromycin versus doxycycline in meibomian gland dysfunction: a randomized double-masked open-label clinical trial. Br J Ophthalmol. 2015;99(2):199-204.
83. Ogawa N, Asanuma M, Hirata H, et al. Cholinergic deficits in aged rat brain are corrected with nicergoline. Arch Gerontol Geriatr. 1993;16:103-110.
84. Giardino L, Giuliani A, Battaglia A, et al. Neuroprotection and aging of the cholinergic system: a role for the ergoline derivative nicergoline (Sermion). Neuroscience. 2002;109:487-497.
85. Kim SY, Choi JS, Joo CK. Effects of nicergoline on corneal epithelial wound healing in rat eyes. Invest Ophthalmol Vis Sci. 2009;50:621-625.
86. Lee YC, Kim SY. Treatment of neurotrophic keratopathy with nicergoline. Cornea. 2015;34(3):303-307.
87. Viso E, Rodríguez-Ares MD, Oubiña B, Gude F. Prevalence of asymptomatic and symptomatic meibomian gland dysfunction in the general population of Spain. IOVS. 2012;53(6):2601-2606.
88. Toyos R, McGill W, Briscoe D. Intense pulsed light treatment for dry eye disease due to meibomian gland dysfunction: a 3-year retrospective study. Photomed Laser Surg. 2015;33(1):41-46.
89. Dell SJ. Intense pulsed light for evaporative dry eye disease. Clin Ophthalmol. 2017;11:1167-1173.
90. Karu T. Primary and secondary mechanisms of action of visible to near IR radiation on cells. J Photochem Photobiol B. 1999;49(1):1-17.
91. Kirn T. Intense pulsed light eradicates Demodex mites. Skin Allergy News. 2002;33:37.
92. Byun J, Choi H, Myung K, Choi Y. Expression of IL-10, TGF-β1 and TNF-α in cultured keratinocytes (HaCaT cells) after IPL treatment or ALA-IPL photodynamic treatment. Ann Dermatol. 2009;21(1):12-17.
93. Taylor M, Porter R, Gonzalez M. Intense pulsed light may improve inflammatory acne through TNF-α down-regulation. J Cosmet Laser Ther. 2014;16(2):96-103.
94. Kim H, Kim HB, Seo JH, et al. Effect of 808-nm laser photobiomodulation treatment in blepharitis rat model. Cornea. 2021;40:358-363.
95. Gonnelli FA, et al. Low-level laser therapy for the prevention of low salivary flow rate after radiotherapy and chemotherapy in patients with head and neck cancer. Radiol Bras. 2016;49:86-91.
96. Stonecipher K, Abell TG, Chotiner B, et al. Combined low level light therapy and intense pulsed light therapy for the treatment of meibomian gland dysfunction. Clin Ophthalmol. 2019;13:993-999.
97. Di Marino M, et al. Combined low-level light therapy and intense pulsed light therapy for the treatment of dry eye in patients with Sjögren’s syndrome.
98. Chelnis J, Garcia CN, Hamza H. Multi-frequency RF combined with intense pulsed light improves signs and symptoms of dry eye disease due to meibomian gland dysfunction. Clin Ophthalmol. 2023;17:3089-3102.
99. Zhao Y, Veerappan A, Yeo S, et al. Clinical trial of thermal pulsation (LipiFlow) in meibomian gland dysfunction with pretreatment meibography. Eye Contact Lens. 2016;42(6):339-346.
100. Lane SS, DuBiner HB, Epstein RJ, et al. A new system, the LipiFlow, for the treatment of meibomian gland dysfunction. Cornea. 2012;31(4):396-404.
101. Tauber J, Owen J, Bloomenstein M, et al. Comparison of the iLUX and the LipiFlow for the treatment of meibomian gland dysfunction and symptoms: a randomized clinical trial. Clin Ophthalmol. 2020;14:405-418.
102. Ayres BD, Bloomenstein MR, Loh J, et al. A randomized, controlled trial comparing TearCare and cyclosporine ophthalmic emulsion for the treatment of dry eye disease (SAHARA). Clin Ophthalmol. 2023;17:3925-3940.
103. Tseng SC. HC-HA/PTX3 purified from amniotic membrane as novel regenerative matrix: insight into relationship between inflammation and regeneration. Invest Ophthalmol Vis Sci. 2016;57:ORSFh1-ORSFh8.
104. Tseng SC, Espana EM, Kawakita T, et al. How does amniotic membrane work? Ocul Surf. 2004;2:177-187.
105. Tighe S, Mead OG, Lee A, Tseng SCG. Basic science review of birth tissue uses in ophthalmology. Taiwan J Ophthalmol. 2020;10:3-12.
106. Cheng AM, Zhao D, Chen R, et al. Accelerated restoration of ocular surface health in dry eye disease by self-retained cryopreserved amniotic membrane. Ocul Surf. 2016;14:56-63.
107. Chugh JP, Jain P, Sen R. Comparative analysis of fresh and dry preserved amniotic membrane transplantation in partial limbal stem cell deficiency. Int Ophthalmol. 2015;35(3):347-355.
108. John T, Tighe S, Sheha H, et al. Corneal nerve regeneration after self-retained cryopreserved amniotic membrane in dry eye disease. J Ophthalmol. 2017;2017:6404918.
109. Travé-Huarte S, Wolffsohn JS. Sutureless dehydrated amniotic membrane (Omnigen) application using a specialised bandage contact lens (OmniLenz) for the treatment of dry eye disease: a 6-month randomised control trial. Medicina (Kaunas). 2024;60(6):985.
110. Gupta A, Heigle T, Pflugfelder SC. Nasolacrimal stimulation of aqueous tear production. Cornea. 1997;16(6):645-648.
111. Mihalak KB, Carroll FI, Luetje CW. Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol. 2006;70(3):801-805.
112. Wirta DL, Torkildsen GL, Boehmer B, et al. ONSET-1 phase 2b randomized trial to evaluate the safety and efficacy of OC-01 (varenicline solution) nasal spray on signs and symptoms of dry eye disease. Cornea. 2022;41(10):1207-1216.
113. Deeks ED, Lamb YN. Cenegermin: a review in neurotrophic keratitis. Drugs. 2020;80(5):489-494.
114. Balbuena-Pareja A, Bogen CS, Cox SM, Hamrah P. Effect of recombinant human nerve growth factor treatment on corneal nerve regeneration in patients with neurotrophic keratopathy. Front Neurosci. 2023;17:1210179.
115. Stuard WL, Titone R, Robertson DM. The IGF/insulin-IGFBP axis in corneal development, wound healing and disease. Front Endocrinol (Lausanne). 2020;11:1-15.
116. Hatou S, Yamada M, Akune Y, et al. Role of insulin in regulation of Na+-/K+-dependent ATPase activity and pump function in corneal endothelial cells. Investig Ophthalmol Vis Sci. 2010;51:3935.
117. Burgos-Blasco B, Diaz-Valle D, Rego-Lorca D, et al. Topical insulin, a novel corneal epithelial regeneration agent in dry eye disease. Eur J Ophthalmol. 2024;34(3):719-725.
118. Moreker MR, Thakre N, Gogoi A, et al. Insulin eye drops for neurotrophic keratitis. Indian J Ophthalmol. 2023;71(7):2911-2912.
119. Liu L, Hartwig D, Harloff S, et al. Corneal epitheliotrophic capacity of three different blood-derived preparations. Invest Ophthalmol Vis Sci. 2006;47(6):2438-2444.
120. Tsubota K, Goto E, Fujita H, et al. Treatment of dry eye by autologous serum application in Sjögren’s syndrome. Br J Ophthalmol. 1999;83(4):390-395.
121. Sanchez-Avila RM, Merayo-Lloves J, Riestra AC, et al. Treatment of patients with neurotrophic keratitis stages 2 and 3 with plasma rich in growth factors (PRGF-Endoret) eye-drops. Int Ophthalmol. 2018;38(3):1193-1204.
122. Alio JL, Rodriguez AE, Ferreira-Oliveira R, et al. Treatment of dry eye disease with autologous platelet-rich plasma: a prospective, interventional, non-randomized study. Ophthalmol Ther. 2017;6(2):285-293.
123. Avila MY. Restoration of human lacrimal function following platelet-rich plasma injection. Cornea. 2014;33(1):18-21.
124. Alio JL, Colecha JR, Pastor S, et al. Symptomatic dry eye treatment with autologous platelet-rich plasma. Ophthalmic Res. 2007;39:124-129.
125. Hussain M, Shtein RM, Sugar A, et al. Long-term use of autologous serum 50% eye drops for the treatment of dry eye disease. Cornea. 2014;33(12):1245-1251.
126. Albietz J, Sanfilippo P, Troutbeck R, Lenton LM. Management of filamentary keratitis associated with aqueous-deficient dry eye. Optom Vis Sci. 2003;80(6):420-430.
127. Pentapati M, Shah S. Filamentary keratitis: a case series. Int J Scientific Res Pub. 2015;5(3):1-7.
128. Jones L. TFOS DEWS II management and therapy report. Ocul Surf. 2017;15(3):575-628.
129. Akyol-Salman I, Azizi S, Mumcu U, Baykal O. Efficacy of topical N-acetylcysteine in the treatment of meibomian gland dysfunction. J Ocul Pharmacol Ther. 2010;26(4):329-333.
130. Magno M, Moschowits E, Arita R, et al. Intraductal meibomian gland probing and its efficacy in the treatment of meibomian gland dysfunction. Surv Ophthalmol. 2021;66(4):612-622.
131. Solomon A, Touhami A, Sandoval H, et al. Neurotrophic keratopathy: basic concepts and therapeutic strategies. Comp Ophthalmol Update. 2000;3:165-174.
132. Pakarinen M, Tervo T, Tarkkanen A. Tarsorraphy in the treatment of persistent corneal lesions. Acta Ophthalmol. 1987;182:69-73.
133. Donnenfeld ED, Perry HD, Nelson DB. Cyanoacrylate temporary tarsorrhaphy in the management of corneal epithelial defects. Ophthalmic Surg. 1991;22:591-593.
134. Sahlin S, Linderoth R. Eyelid botulinum toxin injections for the dry eye. Dev Ophthalmol. 2008;41:187-192.
135. Ho RW, Fang PC, Chang CH, et al. A review of periocular botulinum neurotoxin on the tear film homeostasis and the ocular surface change. Toxins (Basel). 2019;11:66.
136. Chen KY, Chan HC, Chan CM. Is botulinum toxin A effective in treating dry eye disease? A systematic review and meta-analysis. Eye (Lond). 2025;34(4):1-10.
137. Viana F. Chemosensory properties of the trigeminal system. ACS Chem Neurosci. 2011;2:38-50.
138. Abelson MB, Gamache D. Cool opportunities to modulate nociception. Rev Ophthalmol. 2013;20:48-50.
139. Wirta DL, Senchyna M, Lewis AE, et al. A randomized, vehicle-controlled, phase 2b study of two concentrations of the TRPM8 receptor agonist AR-15512 in the treatment of dry eye disease (COMET-1). Ocul Surf. 2022;26:166-173.
140. Higdon A, Diers AR, Oh JY, et al. Cell signaling by reactive lipid species: new concepts and molecular mechanisms. Biochem J. 2012;442:453-464.
141. Cejkova J, Ardan T, Jirsova K, et al. The role of conjunctival epithelial cell xanthine oxidoreductase/xanthine oxidase in oxidative reactions on the ocular surface of dry eye patients with Sjögren’s syndrome. Histol Histopathol. 2007;22:997-1003.
142. Turk A, Aykut M, Akyol N, et al. Serum anti-carbonic anhydrase antibodies and oxidant-antioxidant balance in patients with acute anterior uveitis. Ocul Immunol Inflamm. 2014;22:127-132.
143. Wakamatsu TH, Dogru M, Ayako I, et al. Evaluation of lipid oxidative stress status and inflammation in atopic ocular surface disease. Mol Vis. 2010;16:2465-2475.
144. Choi W, Lian C, Ying L, et al. Expression of lipid peroxidation markers in the tear film and ocular surface of patients with non-Sjögren syndrome: potential biomarkers for dry eye disease. Curr Eye Res. 2016;41:1143-1149.
145. Aldeyra therapeutics achieves primary endpoint in phase 3 dry eye disease chamber trial of reproxalap and plans NDA pesubmission. https://ir.aldeyra.com/news-releases/news-release-details/aldeyra-therapeutics-achieves-primary-endpoint-phase-3-dry-eye-0. Accessed May 8, 2025.
146. Lawrence BD, Karpecki PM, Infanger DW, et al. Silk-derived protein-4 versus vehicle control in treating patients with moderate to severe dry eye disease: a randomized clinical trial. Am J Ophthalmol. 2025;269:315-326.
(本网站所有内容,凡注明来源为“医脉通”,版权均归医脉通所有,未经授权,任何媒体、网站或个人不得转载,否则将追究法律责任,授权转载时须注明“来源:医脉通”。本网注明来源为其他媒体的内容为转载,转载仅作观点分享,版权归原作者所有,如有侵犯版权,请及时联系我们。)