郑刚教授:粥样硬化斑块稳定和消退的临床证据(药物治疗篇)
2025-07-27 来源:医脉通

动脉粥样硬化斑块是由脂质沉积、炎症变化、细胞迁移和动脉壁受损等因素之间的复杂相互作用引起的。在过去的二十年中,利用血管内成像等侵入性技术[血管内超声(IVUS)检查]的临床试验表明,降低以低密度脂蛋白胆固醇(LDL-C)为主的致动脉粥样硬化脂蛋白胆固醇至极低水平,可以安全有效地降低动脉粥样硬化斑块负荷,改变斑块组成。既往在临床实践中,多应用强效他汀类药物来达到这一结果。自2016年以来,前蛋白转化酶枯草溶菌素9(PCSK9)等新型降脂药物的研发和应用,对斑块消退和临床风险降低显示出增量效应。那么,常用的降脂治疗策略及降低残余风险的药物能否稳定斑块甚至使斑块消退,本文对此进行了汇总。


郑说心前沿1200-320.png

治疗策略


1.生活方式改善


进行基于循证的心脏健康饮食的生活方式改善,如地中海饮食或防控高血压饮食(DASH)等,是管理冠状动脉疾病(CAD)风险因素的重要组成部分[28]。然而,基于现有数据仍不能明确生活方式改善是否能稳定或消退冠状动脉斑块。


目前,几乎没有关于饮食改善单独促进冠状动脉斑块消退相关的数据。


Lifestyle Heart试验[29]纳入28名冠状动脉粥样硬化患者,并被随机分配到强化生活方式改善(低脂素食、戒烟、适度运动和压力管理)或常规护理组。随访1年显示,在强化生活方式组中,冠状动脉造影评估的冠状动脉直径狭窄百分比从平均40.0%(标准差16.9%)降低到37.8%(标准差16.5%),对照组则从平均42.7%(标准差15.5%)增加到46.1%(标准差18.5%)。随访5年显示,通过生活方式干预,直径狭窄百分比持续下降[30]


1992年发表的STARS试验[31]纳入心绞痛或既往心梗患者,并随机分配到降脂饮食组、降脂饮食+考来烯胺(cholestyramine)组或常规护理组。研究显示,与常规护理组患者相比,降脂饮食组和饮食+考来烯胺组患者的冠状动脉狭窄进展减少,冠状动脉造影评估的冠状动脉管腔直径更大[31]。然而,应用血管造影评估的管腔狭窄作为冠状动脉斑块负荷的替代指标是这类早期研究的局限性。


2021年发表的DISCO-CT研究[32]纳入了92名接受CCTA治疗的非阻塞性冠状动脉斑块(狭窄率<70%)患者,并被随机分配至DASH饮食+最佳药物治疗(OMT)组,或仅OMT组。随访约70周显示,两组之间的动脉粥样硬化体积百分比(PAV)没有显著差异,DASH饮食+最佳药物治疗(OMT)组的非钙化斑块减少略高于仅OMT组(P=0.045)。


总体而言,尽管饮食改善是ASCVD预防和管理的基石,但饮食改变对冠状动脉斑块消退的具体益处尚未在大型、对照良好的随机临床试验中得到证实。


2.降LDL-C药物


当代高质量证据支持使用药物治疗来稳定和消退冠状动脉斑块。具体而言,设计良好的临床试验显示,减少致动脉粥样硬化脂蛋白(主要是LDL-C)的药物治疗方法,可持续改善斑块负荷,并使斑块发生有利的形态学变化。


(1)他汀类药物


多项基于IVUS的随机对照试验表明,应用他汀类药物降低血浆LDL-C水平,可使慢性CAD或ACS患者的斑块稳定或消退;且有研究显示高强度他汀类药物治疗或较低强度治疗更有效。


REVERSAL试验表明[33],每日接受阿托伐他汀80mg的CAD患者动脉粥样硬化体积进展率低于每日服用普伐他汀40 mg的患者 ,高剂量组患者的动脉粥样硬化体积无明显进展。上述结果似乎与强化他汀类药物治疗比中等强度他汀类药物治疗更能降低LDL-C和C反应蛋白(CRP)水平相关[34]


SATURN试验[35]应用IVUS比较了两种高强度他汀类药物治疗方案(阿托伐他汀80mg/d vs瑞舒伐他汀40mg/d)的斑块负荷变化 。研究发现,与阿托伐他汀组相比,瑞舒伐他汀组的LDL-C水平略低,但两组的主要疗效终点PAV下降幅度相似(0.99% vs 1.22%)。此外,与阿托伐他汀组(-4.42 mm3)相比,瑞舒伐他汀组(-6.39 mm3)的总动脉粥样硬化体积(TAV,预先指定的次要终点)降低幅度更大。总体而言,这两种药物均能诱导大多数患者的斑块消退。


STABLE研究[36]纳入了312名罹患纤维动脉粥样硬化病变的患者,并随机分为瑞舒伐他汀组(40 mg/d)和瑞舒伐他汀组(10mg/d)。研究显示,两组患者的斑块组成均发生了有利变化。两组患者的坏死核心体积、斑块体积和薄帽纤维粥样硬化斑块(TCFA)均降低,其降低幅度相似。


JAPAN-ACS试验随访8~12个月显示[37]匹伐他汀组(4 mg/d)或阿托伐他汀组(20 mg/d)的斑块均明显消退,且组间差异不显著(经IVUS评估)。


此外,几项在稳定型CAD患者中使用IVUS进行评估的非随机试验也提示,进行他汀类药物治疗可使斑块稳定和/或消退。开放标签、盲法终点ASTEROID试验[38]纳入进行他汀类药物初始治疗的CAD患者,证实瑞舒伐他汀(40 mg/d)可改善三种预先设定的IVUS斑块负荷指标,即PAV变化、基线时病变严重程度最大的10 mm 亚段的标称粥样硬化体积变化及整个受累动脉的标准化TAV变化。为期76周的COSMOS研究[39]同样显示,进行瑞舒伐他汀(2.5 mg/d)治疗可使PAV降低。


过去十年,几项小型研究应用OCT和NIRS结合IVUS来探究他汀类药物治疗对斑块组成和消退的影响。


IBIS-4观察性研究(103名)[40-41]随访13个月显示,高强度瑞舒伐他汀治疗可使ST段抬高型心梗(STEMI)患者非梗死冠状动脉斑块的最小纤维帽厚度增加,减少巨噬细胞积聚,斑块成分从TCFA向非TCFA转变的比例更高。


在ESCORT研究中[42],53名ACS患者被随机分配到4mg/d匹伐他汀早期治疗组(从基线开始)或晚期治疗组(基线后3周) ,并进行OCT评估。研究显示,早期他汀类药物治疗组在前3周纤维帽厚度显著增加,36周时两组的纤维帽厚度增加幅度相似。


此外,EASY-FIT研究[43]对70名不稳定型心绞痛患者进行了OCT评估,研究显示阿托伐他汀20 mg/d治疗较阿托伐他汀5mg/d所导致的纤维帽厚度增加更多 。


在87名接受血流储备分数、IVUS和NIRS评估的多支冠状动脉疾病患者的YELLOW研究[44]纳入87名多冠脉病变患者,并进行血流储备分数、IVUS和NIRS评估。研究显示,与标准降脂治疗相比,随机接受高强度瑞舒伐他汀治疗患者的斑块脂质含量降低。


PARADIGM研究[45]表明,他汀类药物使用与PAV进展速度较慢、钙化PAV进展更快,以及高危斑块特征减少相关。


(2)依折麦布 


‌依折麦布‌是一种选择性‌胆固醇吸收抑制剂‌,指南推荐其用于单独应用他汀类药物无法充分降脂的患者,以进一步降低心血管事件高危患者的LDL-C水平[28]。尽管在他汀类药物治疗基础上加用依折麦布可降低二级预防患者的心血管事件风险,但FDA未批准该适应证[46]。有限证据支持,在他汀基础上加用依折麦布可使斑块消退;但依折麦布使用能否改善斑块形态尚未明确。


HEAVEN小型研究[47]在89名稳定型心绞痛患者中,应用IVUS虚拟组织学成像探究了强化降脂治疗(阿托伐他汀80 mg/d和依折麦布10 mg)与标准降脂治疗对斑块的影响。随访12个月显示,与标准治疗组相比,强化降脂组的PAV有所下降。两组之间的斑块组成没有显著差异。相比之下,小型ZEUS试验[48]显示,进行依折麦布(10 mg/d)和阿托伐他汀(20 mg/d)联合治疗(50名)较单独进行阿托伐他汀(20 mg/d)治疗(45名)的ACS患者的斑块进展无显著差异。


PRECISE-IVUS研究显示[49],与仅进行阿托伐他汀治疗相比,进行阿托伐他汀加依折麦布联合治疗不能显著改善患者的PAV改变,但斑块消退比例更高(78% vs 58%;P = 0.004)。


此外,其他多项小型研究表明,与单独使用他汀类药物治疗相比,他汀类药物联合依折麦布治疗具有潜在益处[50-51];但也有研究[52]显示,联合治疗不能是冠脉斑块明显消退。据推测,患者差异或样本量变化或为联合治疗结果不一致的原因。


(3)PCSK9抑制剂


PCSK9抑制剂阿利西尤单抗依洛尤单抗,已被批准用于进一步降低血浆LDL-C水平,适用于心血管事件高危患者的二级预防和一级预防[53-57]。使用血管内成像的试验已证实,在他汀类药物治疗基础上加用PCSK9抑制剂可以促进斑块消退和稳定。


GLAGOV研究[58]显示,在他汀类药物治疗基础上,应用依洛尤单抗显著降低血浆LDL-C水平;且与安慰剂组相比,依洛尤单抗组的PAV降低幅度(0.05% vs 95%)更大、TAV降低幅度(0.9 mm3 vs 5.8 mm3)更大、斑块消退比例也更高(47.3% vs 64.3%)。然而,GLAGOV亚组研究显示,两组患者在IVUS评估的斑块成分方面没有显著差异,提示IVUS在评估斑块成分变化方面存在一定的局限性[59]


PACMAN-AMI随机研究[60]显示,在主要终点IVUS衍生的平均PAV变化方面,阿利西尤单抗组显著优于安慰剂治疗。在与斑块组成相关的次要终点方面,与安慰剂相比,阿利西尤单抗的最大脂质核心负荷指数(NIRS测量)显著降低,最小纤维帽厚度(OCT测量)显著增加,提示PCSK9抑制剂治疗可稳定斑块。三重回归——定义为PAV的同时降低、脂质含量降低和最小纤维帽厚度增加——发生在1/3的患者中,阿利西尤单抗治疗的患病率高于安慰剂(40.8% vs 23%),且与死亡、心梗及血运重建的复合终点发生率降低相关。


HUYGENS研究[62]对161名非ST段抬高型心肌梗死(NSTEMI)患者进行了为期52周的研究。在研究中,患者每月皮下注射依洛尤单抗 420mg或安慰剂,并通过OCT测量斑块组成。研究显示,依洛尤单抗治疗可导致斑块组成发生有利变化,主要表现为最小纤维帽厚度增加更大和最大脂质弧(主要终点)减少更多,以及巨噬细胞指数下降。除此之外,研究还发现了斑块消退的证据,与安慰剂相比,依洛尤单抗治疗的PAV降幅更大。


然而,ODYSSEY-J-IVUS随机研究[63]的结果与GLAGOV和PACMAN-AMI试验相矛盾,这可能是由于其治疗期更短(36周)、样本量更小,从而可能影响了检测斑块体积显著差异的能力所致。


英克司兰是一种新型的小干扰RNA(siRNA)疗法,靶向PCSK9,在基础降脂治疗基础上加用英克司兰,可显著降低心血管疾病高危或确诊患者的LDL-C水平约50%[64]。然而,目前尚未明确英克司兰对斑块形态和负荷或心血管结局的影响。


(4)贝培多酸(Bempedoic acid)


贝培多酸是一种ATP柠檬酸裂解酶抑制剂,可降低他汀类药物不耐受患者的血浆LDL-C水平和主要不良心血管事件风险[65]。然而,贝培多酸对斑块稳定或消退的影响尚未进行评估。


LDL-C降低和斑块负荷


对斑块组成、稳定及消退有利的药物可显著降低血浆LDL-C水平。LDL-C强化治疗的获益在冠脉事件后就显现出来。纳入53名患者的小型ESCORT研究显示[42],ACS后进行他汀类药物治疗与治疗前3周纤维帽厚度增加有关。


关于降LDL-C药物的整体试验数据初步显示,达到的血浆LDL-C水平与斑块体积百分比(PAV)变化之间存在关联——在达到最低血浆LDL-C水平的试验中,观察到的PAV降幅最大。不过,由于试验设计和基线患者特征存在差异,直接对比这些研究的结果受到了限制。


在PACMAN-AMI和HUYGENS[60,62]研究中,约1年随访时,可观察到接受PCSK9抑制剂治疗患者的斑块消退。尽管大多数评估斑块稳定和消退的研究都使用了他汀类药物治疗,但PCSK9抑制剂相关试验也提示,通过不同机制降低血浆LDL-C也可能对斑块负荷产生有利影响。此外,在传统降脂治疗基础上进一步降低LDL-C水平可能会对斑块负荷产生累积效应。


总体而言,降低LDL-C的总体研究数据初步表明,血浆LDL-C水平与PAV变化之间存在关系,在血浆LDL-C水平最低的研究中,PAV的降低幅度最大。然而,直接比较受到试验设计和基线患者特征差异的限制。


LDL-C指标和残余风险


GLAGOV研究[58]、PACMAN-AMI研究[60]和HUYGENS研究[62]显示,在他汀类药物基础上加用PCSK9抑制剂可使平均血浆LDL-C水平分别降至36.6 mg/dl 、23.6mg/dl和 28.1 mg/dl,这些LDL-C水平远低于通常用于二级预防的血浆LDL-C治疗阈值(70 mg/dl)[28]


当代专家共识已经认可了进一步降低血浆LDL-C目标值的作用。《2022 ACC专家共识决策路径:降低LDL-C的非他汀类治疗在动脉粥样硬化性心血管疾病风险管理中的作用》建议极高危患者(定义为既往多个严重ASCVD事件史,或一个严重ASCVD事件和多个高危疾病史)二级预防的血浆LDL-C治疗目标值为55 mg/dl;非高危患者的目标值为70 mg/dl[53]


上述研究数据表明,进一步降低LDL-C水平(远低于55 mg/dl)可能对ASCVD的影像学生物标志物产生有利影响。这些发现支持在他汀类药物治疗基础上加用非他汀类药物,以进一步降低LDL-C水平。


然而,尽管血浆LDL-C水平进一步降低,但残余ASCVD风险仍然持续存在,或主要与残余脂蛋白、Lp(a)和心脏代谢因素相关。


LDL单采(Apheresis)


LDL单采是一种体外治疗策略,可进一步降低高危患者的脂蛋白水平。例如,家族性高胆固醇血症(FH)或血浆Lp(a)水平升高患者,即使进行OMT治疗[66-68],血脂水平降低仍不足。


LACMART研究[69]纳入18名FH患者显示,与单独使用药物治疗相比,LDL单采联合药物治疗的积极策略可导致最小管腔直径(通过冠状动脉造影)和斑块面积(通过IVUS)减小。在纳入160名ACS患者(无FH)的PREMIER试验中[70],与标准治疗相比,LDL单采加他汀类药物治疗导致斑块消退趋势更大,尽管主要终点(TAV百分比变化)没有达到显著性差异。这些初步数据支持单采积极降低血浆LDL-C与斑块消退之间的关系。


其他脂蛋白靶点


尽管试图最大限度地降低血浆LDL-C水平,但ASCVD患者仍有一定的残余心血管风险,这在一定程度上是由心脏代谢因素和残余血浆脂蛋白驱动的[71-73]。人们有兴趣了解通过靶向其他脂蛋白颗粒,如高密度脂蛋白胆固醇(HDL-C)、甘油三酯和Lp(a)来降低残余风险的治疗机会。初步数据表明,除了降低血浆LDL-C水平外,还可以通过额外的脂蛋白修饰来减少斑块负荷。


1.烟酸


烟酸已被证明对多种脂蛋白水平有积极影响。然而,目前还没有关于烟酸治疗对冠状动脉斑块影响的高质量数据。一项小型随机研究(71名)显示,在背景他汀类药物治疗中加入高剂量烟酸会增加血浆HDL-C水平,并使颈动脉斑块显著消退[74]。相比之下,对已确诊心血管疾病患者的随机AIM-HIGH试验表明[75],尽管血浆HDL-C水平有所改善,但在他汀类药物治疗中添加烟酸并没有带来额外获益。此外,HPS2-THRIVE研究[76]显示,在他汀类药物治疗基础上加用缓释烟酸并没有显著减少血管事件,反而增加不良事件风险。


2.胆固醇酯转移蛋白(CETP)抑制剂


CETP抑制剂可升高血浆HDL-C水平,引起了人们对其降低心血管事件发生率的兴趣。然而,ILLUMI NATE研究[77]显示,应用CETP抑制剂torcetrapib无获益,且可增加死亡和心脏事件风险。随后的研究表明,torcetrapib具有醛固酮样脱靶作用,可提高血清钠水平并降低血清钾水平[78-79]。此外,ILLUSTRATE研究[80]显示,与单独进行阿托伐他汀治疗相比,加用torcetrapib不能改善患者的PAV(IVUS评估)。Torcetrapib研发于2006年终止。


CETP抑制剂dalcetrapib[81]和evacetrapib[82]的随机、安慰剂对照试验表明,尽管血浆HDL-C水平升高,但心血管事件并没有减少。dal-PLAQUE IIb期研究[27]评估了dalcetrapib在130名冠心病患者或高危冠心病患者中的安全性和有效性(MRI和PET–CT测量)。研究显示,在24个月内,dalcetrapib对动脉壁没有病理影响,且可使患者获益,包括总血管扩张地减少。随后的REVEAL试验[83]显示,与安慰剂相比,dalcetrapib可显著减少主要冠状动脉事件(10.8% vs11.8%;HR=0.91,P =0.004)。


值得注意的是,在2023年进行的一项II期研究中,obicetrapib与依折麦布联合使用可显著降低血浆LDL-C水平63%[84]。这些数据表明,CETP抑制剂也可能在血浆LDL-C降低中发挥作用(而不仅仅是升高血浆HDL-C);但目前尚未评估obicetrapib对动脉粥样硬化斑块的影响。


尽管在传统的流行病学研究中,血浆HDL-C水平与心血管疾病风险呈负相关,但应用药物升高血浆HDL-C水平是否可以降低心血管事件发生率仍然是一个不确定的问题[85]。目前,尚无一致的数据支持使用升HDL-C药物进行斑块消退。CHI-SQUARE等研究[86-87]显示,与安慰剂相比,输注升高HDL-C的药物CER-100不会使斑块消退。


此外,多中心、双盲、随机Milano-PILOT研究[88]显示,在进行他汀类药物治疗的ACS患者中,输注MDCO-216不会导致斑块消退。相反,之前的一项随机试验则显示,ETC-216可使ACS患者的冠状动脉斑块明显消退[89]。另一种升高HDL-C水平的方法是输注重组HDL。然而,ERASE研究[90]显示,与安慰剂相比,这种策略没有导致ACS患者的斑块明显消退(动脉粥样硬化体积的百分比变化或IVUS上斑块体积的标称变化)。


3.甘油三酯


血浆甘油三酯水平升高是残余心血管风险的潜在来源,尽管与LDL-C不同,药物减低甘油三酯与心血管事件降低之间的关联尚未得到很好的证实[91-92]


EVAPORATE研究[93]探究了icosapent ethyl(IPE)降低甘油三酯对冠状动脉斑块的影响。研究显示,与安慰剂组相比,在18个月时,IPE组的低衰减斑块变化的主要终点显著降低。然而,该研究存在重要局限性,包括①两组之间的基线斑块体积的不平衡(提示可能回归到平均值);②安慰剂为矿物油(对炎症生物标志物产生不利影响)。IPE对斑块消退的有利影响是由矿物油组斑块体积增加>100%所驱动的[94]。随后对Garlic 5研究[5]安慰剂组(非矿物油安慰剂)的28名患者和EVAPORATE研究安慰剂组的32名患者进行的事后分析显示,两安慰剂组之间的斑块体积进展没有显著差异[95]。因此,目前关于IPE对斑块负荷影响的数据解释仍在不断发展。


在CHERRY研究[96]中,193名接受PCI治疗的冠心病患者被随机分配接受ω-3脂肪酸二十碳五烯酸加匹伐他汀治疗组或单独匹伐他汀治疗组。随访6~8个月显示,两组患者的主要终点没有显著差异,尽管与单独匹伐他汀治疗相比,联合治疗与标准化TAV的次要终点显著降低有关。


贝特类药物对斑块稳定或消退的影响尚未得到研究。然而,值得注意的是,纳入2型糖尿病和轻-中度高甘油三酯血症患者的PROMINENT试验[92]表明,与安慰剂相比,佩玛贝特(pemafibrate)并没有降低心血管事件的发生率。因此,贝特类药物在轻-中度高甘油三酯血症患者的二级心血管预防中的作用值得怀疑。


4.Lp(a) 


血浆Lp(a)水平升高是ASCVD的重要危险因素和新兴治疗靶点,与稳定CAD患者的CCTA评估的低衰减斑块进展相关[97-98]。几项正在进行的心血管结局试验[99-101]旨在探究应用pelacarsen和olpasiran降低血浆Lp(a)水平的疗效和安全性。然而,通过药物手段降低Lp(a)水平是否与斑块消退或稳定有关,仍有待证实。


非脂质类药物


1.降糖药


在PREDICT研究中,与无糖尿病患者相比,糖尿病患者的多个斑块负荷标志物(包括PAV)进展加快,斑块形态变化更为不利[102]。JAPAN-ACS亚组研究显示,高基线水平的晚期糖基化终末产物与斑块进展显著相关[103]。然而,降糖治疗是否会持续导致斑块消退或稳定尚未明确。


纳入543名糖尿病合并CAD患者的PERISCOPE研究[104-105]显示,吡格列酮(噻唑烷二酮类降糖药物)可使甘油三酯与HDL-C的比率发生有利变化,并降低了斑块进展相关标志物水平,包括PAV的变化。然而,APPROACH研究[106]显示,与格列吡嗪相比,噻唑烷二酮类药物罗格列酮并未促进2型糖尿病合并CAD患者的斑块消退。


目前尚未明确新型降糖药物钠葡萄糖共转运蛋白2(SGLT2)抑制剂和胰高血糖素样肽1受体激动剂等对斑块的影响。观察数据表明,与标准治疗相比,SGLT2抑制剂使用与2型糖尿病合并多支非梗阻性CAD患者OCT评估的最小纤维帽厚度增加、脂质弧度和巨噬细胞等级降低相关[107]


2.降压药


目前,关于降压药物治疗对斑块稳定或消退作用的数据并不一致,这表明血压降低与斑块稳定或消退标志物之间存在不确定的关系。


在CAMELOT试验[108]中,通过IVUS检查可发现进行钙离子通道阻滞剂氨氯地平(10 mg/d)治疗的CAD患者,无动脉粥样硬化进展;相比之下,血管紧张素转化酶抑制剂(ACEI)依那普利(20 mg/d)治疗患者则呈现出疾病进展趋势,而安慰剂组则出现了显著的疾病进展。


OLIVUS试验[109]则显示,与安慰剂相比,血管紧张素II受体拮抗剂(ARB)奥美沙坦酯可显著降低稳定型CAD患者PAV的主要终点。


然而,前瞻性研究[110]则显示,ACEI培哚普利对斑块进展没有影响(通过血管造影或IVUS评估)。同样,AQUARIUS安慰剂对照研究等[111]显示,使用第二代肾素抑制剂阿利吉仑不会导致斑块消退或斑块进展减缓。


3.秋水仙碱


低剂量秋水仙碱治疗可降低二级预防患者主要心血管事件的发生率[112-113]。在一项针对80名近期ACS(<1个月)患者的观察性研究[114]显示,与单独OMT治疗相比,OMT联合低剂量秋水仙碱(0.5mg/d)治疗可显著降低C反应蛋白水平和低衰减斑块体积的显著,提供了秋水仙碱治疗有利于改善斑块的初步证据,有必要进一步探究秋水仙碱对斑块负荷的影响。


4.其他药物


近年来,已经探究了多种不同作用机制的其他治疗药物对斑块稳定或消退的影响,但没有一致的有利证据。


在有症状的性腺功能减退老年男性中,睾酮治疗相较于安慰剂,会导致非钙化冠状动脉斑块体积增大更明显[115]


在针对CAD、腹部肥胖和代谢综合征患者的STRADIVARIUS研究[116]中,使用rimonabant(一种选择性大麻素1型拮抗剂)来降低体重并改善代谢,对PAV没有有利影响,但可降低TAV。


ASSURE IIb期研究表明[117],在CAD和HDL-C水平较低的患者中,BET溴结构域蛋白抑制剂RVX-208与安慰剂所致斑块消退相似。


SECURE研究[118]显示,在119名接受PCI治疗的患者中,与单独使用西洛他唑相比,联合应用普罗布考和西洛他唑未导致斑块组成或体积的显著变化。同样,在接受PCI的患者中[119],与安慰剂相比,抗氧化剂Succinobucol并没有导致更明显的斑块消退。


临床证据表明,在稳定型ASCVD患者中[120],联合应用低剂量利伐沙班阿司匹林可减少心血管事件风险,但增加出血事件风险。一项小型研究[121]结果表明,与华法林相比,利伐沙班可减少绝对和标准化纤维斑块体积的进展,但在总斑块体积、非钙化斑块体积或钙化斑块体积的发展率方面没有显著差异。总体而言,关于华法林或直接口服抗凝剂治疗对斑块影响的研究得出了不一致的结果[6]

参考文献
1.Grundy, S. M. et al. 2018 AHA /ACC/ AACVPR/AAPA/ ABC/ACPM/ADA/AGS/APhA/ASPC/ NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation 13, e1082–e1143 (2019).
2.Ornish, D. et al. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet 336, 129–133 (1990).
3.Ornish, D. et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA 280, 2001–2007 (1998).
4.Watts, G. F. et al. Efects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St Thomas’ Atherosclerosis Regression Study (STARS). Lancet 339, 563–569 (1992).
5.Henzel, J. et al. High-risk coronary plaque regression after intensive lifestyle intervention in nonobstructive coronary disease: a randomized study. JACC Cardiovasc. Imaging 14, 1192–1202 (2021).
6.Nissen, S. E. et al. Efect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291, 1071–1080 (2004).
7.Nissen, S. E. et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N. Engl. J. Med. 352, 29–38 (2005).
8.Nicholls, S. J. et al. Efect of two intensive statin regimens on progression of coronary disease. N. Engl. J. Med. 365, 2078–2087 (2011).
9.Park, S. et al. Efect of statin treatment on modifying plaque composition: a double-blind, randomized study. J. Am. Coll. Cardiol. 67, 1772–1783 (2016).
10.Hiro, T. et al. Efect of intensive statin therapy on regression of coronary atherosclerosis in patients with acute coronary syndrome: a multicenter randomized trial evaluated by volumetric intravascular ultrasound using pitavastatin versus atorvastatin (JAPAN-ACS [Japan assessment of pitavastatin and atorvastatin in acute coronary syndrome] study). J. Am. Coll. Cardiol. 54, 293–302 (2009).
11.Nissen, S. E. et al. Efect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295, 1556–1565 (2006).
12.Takayma, T. et al. Efect of rosuvastatin on coronary atheroma in stable coronary artery disease: multicenter coronary atherosclerosis study measuring efects of rosuvastatin using intravascular ultrasound in Japanese subjects (COSMOS). Circ. J. 73, 2110–2117 (2009).
13.Raber, L. et al. Efect of high-intensity statin therapy on atherosclerosis in non-infarct-related coronary arteries (IBIS-4): a serial intravascular ultrasonography study. Eur. Heart J. 21, 490–500 (2015).
14.Raber, L. et al. Changes in coronary plaque composition in patients with acute myocardial infarction treated with high-intensity statin therapy (IBIS-4): a serial optical coherence tomography study. JACC Cardiovasc. Imaging 12, 1518–1528 (2019).
15.Nishiguchi, T. et al. Efect of early pitavastatin therapy on coronary fibrous-cap thickness assessed by optimal coherence tomography in patients with acute coronary syndrome: the ESCORT study. JACC Cardiovasc. Imaging 11, 829–838 (2018).
16.Komukai, K. et al. Efect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: the EASY-FIT study. J. Am. Coll. Cardiol. 64, 2207–2217 (2014).
17.Kini, A. S. et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy). J. Am. Coll. Cardiol. 62, 21–29 (2013).
18.Lee, S. et al. Efects of statins on coronary atherosclerotic plaques: the PARADIGM study. JACC Cardiovasc. Imaging 11, 1475–1484 (2018).
19.Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397 (2015).
20.Kovarnik, T. et al. Virtual histology evaluation of atherosclerosis regression during atorvastatin and ezetimibe administration: HEAVEN study. Circ. J. 76, 176–183 (2012).
21.Nakajima, N. et al. Efect of combination of ezetimibe and a statin on coronary plaque regression in patients with acute coronary syndrome: ZEUS trial (eZEtimibe Ultrasound Study). IJC Metab. Endocr. 2, 8–13 (2014).
22.Tsujita, K. et al. Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention: the multicenter randomized PRECISE-IVUS trial. J. Am. Coll. Cardiol. 66, 495–507 (2015).
23.Ueda, Y. et al. Efect of ezetimibe on stabilization and regression of intracoronary plaque — the ZIPANGU study. Circ. J. 11, 1611–1619 (2017).
24.Hougaard, M. et al. Influence of ezetimibe in addition to high-dose atorvastatin therapy on plaque composition in patients with ST-segment elevation myocardial infarction assessed by serial: Intravascular ultrasound with iMap: the OCTIVUS trial. Cardiovasc. Revasc. Med. 18, 110–117 (2017).
25.Hibi, K. et al. Efects of ezetimibe-statin combination therapy on coronary atherosclerosis in acute coronary syndrome. Circ. J. 82, 757–766 (2018).
26.Lloyd-Jones, D. M. et al. 2022 ACC expert consensus decision pathway on the role of nonstatin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 80, 1366–1418 (2022).
27.Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 18, 1713–1722 (2017).
28.O’Donoghue, M. L. et al. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation 146, 1109–1119 (2022).
29.Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).
30.Blom, D. J. et al. Eficacy and safety of alirocumab in adults with homozygous familial hypercholesterolemia: the ODYSSEY HoFH trial. J. Am. Coll. Cardiol. 76, 131–132 (2020).
31.Nicholls, S. J. et al. Efect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA 316, 2373–2384 (2016).
32.Nicholls, S. J. et al. Efect of evolocumab on coronary plaque composition. J. Am. Coll. Cardiol. 72, 2012–2021 (2018).
33.Raber, L. et al. Efect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction: the PACMAN-AMI randomized clinical trial. JAMA 327, 1771–1781 (2022).
34.Biccire, F. G. et al. Concomitant coronary atheroma regression and stabilization in response to lipid-lowering therapy. J. Am. Coll. Cardiol. 82, 1737–1747 (2023).
35.Nicholls, S. J. et al. Efect of evolocumab on coronary plaque phenotype and burden in statin-treated patients following myocardial infarction. JACC Cardiovasc. Imaging 15, 1308–1321 (2022).
36.Ako, J. et al. Efect of alirocumab on coronary atheroma volume in Japanese patients with acute coronary syndrome — the ODYSSEY J-IVUS trial. Circ. J. 25, 2025–2033 (2019).
37.Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).
38.Nissen, S. E. et al. Bempedoic acid and cardiovascular outcomes in statin-intolerant patients. N. Engl. J. Med. 388, 1353–1364 (2023).
39.Raal, F. J. et al. Familial hypercholesterolemia treatments: guidelines and new therapies. Atherosclerosis 277, 483–492 (2018).
40.Wang, A. et al. Systematic review of low-density lipoprotein cholesterol apheresis for the treatment of familial hypercholesterolemia. J. Am. Heart Assoc. 5, e003294 (2016).
41.Lau, F. D. & Guigliano, R. P. Lipoprotein(a) and its significance in cardiovascular disease: a review. JAMA Cardiol. 7, 760–769 (2022).
42.Matsuzaki, M. et al. Intravascular ultrasound evaluation of coronary plaque regression by low density lipoprotein-apheresis in familial hypercholesterolemia: the Low Density Lipoprotein-Apheresis Coronary Morphology and Reserve Trial (LACMART). J. Am. Coll. Cardiol. 40, 220–227 (2002).
43.Banerjee, S. et al. Plaque regression and endothelial progenitor cell mobilization with intensive lipid elimination regimen (PREMIER). Circ. Cardiovasc. Interv. 13, e008933 (2020).
44.Wong, N. D. et al. Residual atherosclerotic cardiovascular disease risk in statin-treated adults: the Multi-Ethnic Study of Atherosclerosis. J. Clin. Lipidol. 11, 1223–1233 (2017).
45.Matsuura, Y., Kanter, J. E. & Bornfeldt, K. E. Highlighting residual atherosclerotic cardiovascular disease risk. Arterioscler. Thromb. Vasc. Biol. 39, e1–e9 (2019).
46.Gurdasani, D. et al. Lipoprotein(a) and risk of coronary, cerebrovascular, and peripheral artery disease: the EPIC-Norfolk prospective population study. Arterioscler. Thromb. Vasc. Biol. 32, 3058–3065 (2012).
47.Lee, J. M. S. et al. Efects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J. Am. Coll. Cardiol. 19, 1787–1794 (2009).
48.The AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).
49.The HPS2-THRIVE Collaborative Group. Efects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med. 371, 203–212 (2014).
50.Barter, P. J. et al. Efects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).
51.Forrest, M. J. et al. Torcetrapib-induced blood pressure elevation is independent of CETP inhibition and is accompanied by increased circulating levels of aldosterone. Br. J. Pharmacol. 154, 1465–1473 (2008).
52.Vergeer, M. et al. Cholesteryl ester transfer protein inhibitor torcetrapib and of-target toxicity: a pooled analysis of the rating atherosclerotic disease change by imaging with a new CETP inhibitor (RADIANCE) trials. Circulation 118, 2515–2522 (2008).
53.Nissen, S. E. et al. Efect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356, 1304–1316 (2007).
54.Schwartz, G. G. et al. Efects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).
55.Lincof, A. M. et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N. Engl. J. Med. 376, 1933–1942 (2017).
56.Bowman, L. et al. Efects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med. 377, 1217–1227 (2017).
57.Ballantyne, C. M. et al. Obicetrapib plus ezetimibe as an adjunct to high-intensity statin therapy: a randomized phase 2 trial. J. Clin. Lipidol. 17, 491–503 (2023).
58.Angelantonio, E. D. et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 1993–2000 (2009).
59.Tardif, J. et al. Efects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur. Heart J. 35, 3277–3286 (2014).
60.Nicholls, S. J. et al. Efect of serial infusions of CER-001, a pre-β high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 Atherosclerosis Regression Acute Coronary Syndrome Trial: a randomized clinical trial. JAMA Cardiol. 3, 815–822 (2018).
61.Nicholls, S. J. et al. Efect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I Milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol. 3, 806–814 (2018).
62.Nissen, S. E. et al. Efect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290, 2292–2300 (2003).
63.Tardif, J. et al. Efects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 297, 1675–1682 (2007).
64.Virani, S. S. et al. 2021 ACC expert consensus decision pathway on the management of ASCVD risk reduction in patients with persistent hypertriglyceridemia: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 78, 960–993 (2021).
65.Pradhan, A. S. et al. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N. Engl. J. Med. 387, 1923–1934 (2022).
66.Budof, M. J. et al. Efect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur. Heart J. 41, 3925–3932 (2020).
67.Ridker, P. M. et al. Efects of randomized treatment with icosapent ethyl and a mineral oil comparator on interleukin-1β, interleukin-6, C-reactive protein, oxidized low-density lipoprotein cholesterol, homocysteine, lipoprotein(a), and lipoprotein-associated phospholipase A1: A REDUCE-IT biomarker substudy. Circulation 146, 372–379 (2022).
68.Lakshmanan, S. et al. Comparison of mineral oil and non-mineral oil placebo on coronary plaque progression by coronary computed tomography angiography. Cardiovasc. Res. 116, 479–482 (2020).
69.Watanabe, T. et al. A randomized controlled trial of eicosapentaenoic acid in patients with coronary heart disease on statins. J. Cardiol. 70, 537–544 (2017).
70.Reyes-Sofer, G. et al. Lipoprotein(a): a genetically determined, causal, and prevalent risk factor for atherosclerotic cardiovascular disease: a scientific statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 42, e48–e60 (2022).
71.Kaiser, Y. et al. Association of lipoprotein(a) with atherosclerotic plaque progression. J. Am. Coll. Cardiol. 79, 223–233 (2022).
72.Kronenberg, F. et al. Frequent questions and responses on the 2022 lipoprotein(a) consensus statement of the European Atherosclerosis Society. Atherosclerosis 374, 107–120 (2023).
73.US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/ NCT04023552 (2023).
74.US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/ NCT05581303 (2023).
75.Kovarnik, T. et al. Plaque volume and plaque risk profile in diabetic vs. non-diabetic patients undergoing lipid-lowering therapy: a study based on 3D intravascular ultrasound and virtual histology. Cardiovasc. Diabetol. 16, 156 (2017).
76.Fukushima, Y. et al. Relationship between advanced glycation end products and plaque progression in patients with acute coronary syndrome: the JAPAN-ACS sub-study. Cardiovasc. Diabetol. 12, 5 (2013).
77.Nissen, S. E. et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299, 1561–1573 (2008).
78.Nicholls, S. J. et al. Lowering the triglyceride/high-density lipoprotein cholesterol ratio is associated with the beneficial impact of pioglitazone on progression of coronary atherosclerosis in diabetic patients: insights from the PERISCOPE (Pioglitazone Efect on Regression of Intravascular Sonographic Coronary Obstruction Prospective Evaluation) study. J. Am. Coll. Cardiol. 57, 153–159 (2011).
79.Gerstein, H. C. et al. Efect of rosiglitazone on progression of coronary atherosclerosis in patients with type 2 diabetes mellitus and coronary artery disease: the assessment on the prevention of progression by rosiglitazone on atherosclerosis in diabetes patients with cardiovascular history trial. Circulation 121, 1176–1187 (2010).
80.Sardu, C. et al. SGLT2-inhibitors efects on the coronary fibrous cap thickness and MACEs in diabetic patients with inducible myocardial ischemia and multi vessels non-obstructive coronary artery stenosis. Cardiovasc. Diabetol. 22, 80 (2023).
81.Nissen, S. E. et al. Efect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure — the CAMELOT study: a randomized controlled trial. JAMA 292, 2217–2225 (2004).
82.Hirohata, A. et al. Impact of olmesartan on progression of coronary atherosclerosis a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of OLmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial. J. Am. Coll. Cardiol. 55, 976–982 (2010).
83.Rodriguez-Granillo, G. A. et al. Long-term efect of perindopril on coronary atherosclerosis progression (from the perindopril’s prospective efect on coronary atherosclerosis by angiography and intravascular ultrasound evaluation [PERSPECTIVE] study). Am. J. Cardiol. 100, 159–163 (2007).
84.Nicholls, S. J. et al. Efect of aliskiren on progression of coronary disease in patients with prehypertension: the AQUARIUS randomized clinical trial. JAMA 310, 1135–1144 (2013).
85.Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).
86.Tardif, J. et al. Eficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).
87.Vaidya, K. et al. Colchicine therapy and plaque stabilization in patients with acute coronary syndrome: a CT coronary angiography study. JACC Cardiovasc. Imaging 11, 305–315 (2018).
88.Budof, M. J. et al. Testosterone treatment and coronary plaque volume in older men with low testosterone. JAMA 317, 708–716 (2017).
89.Nissen, S. E. et al. Efect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 299, 1547–1560 (2008).
90.Nicholls, S. J. et al. Efect of the BET protein inhibitor, RVX-208, on progression of coronary atherosclerosis: results of the phase 2b, randomized, double-blind, multicenter, ASSURE trial. Am. J. Cardiovasc. Drugs 16, 55–65 (2016).
91.Ko, Y. et al. Efects of combination therapy with cilostazol and probucol versus monotherapy with cilostazol on coronary plaque, lipid and biomarkers: SECURE study, a double-blind randomized controlled clinical trial. J. Atheroscler. Thromb. 21, 816–830 (2014).
92.Tardif, J. et al. Efects of the antioxidant succinobucol (AGI-1067) on human atherosclerosis in a randomized clinical trial. Atherosclerosis 197, 480–486 (2008).
93.Eikelboom, J. W. et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N. Engl. J. Med. 377, 1319–1330 (2017).
94.Lee, J. et al. Randomized trial of rivaroxaban versus warfarin in the evaluation of progression of coronary atherosclerosis. Am. Heart J. 206, 127–130 (2018).

(本网站所有内容,凡注明来源为“医脉通”,版权均归医脉通所有,未经授权,任何媒体、网站或个人不得转载,否则将追究法律责任,授权转载时须注明“来源:医脉通”。本网注明来源为其他媒体的内容为转载,转载仅作观点分享,版权归原作者所有,如有侵犯版权,请及时联系我们。)

2
收藏 分享