1.Khan, M. A. et al. Global epidemiology of ischemic heart disease: results from the Global Burden of Disease Study. Cureus 12, e9349 (2020).
2.Marchand, F. Ueber atherosclerosis. Verhandlungen der Kongresse fuer Innere Medizin. 21 Kongresse (1904).
3.Ignatowski, A. I. Ueber die Wirkung der tierschen Einweisse auf der Aorta. Virchows Arch. Pathol. Anat. 198, 248 (1909).
4.Windaus, A. Ueber der Gehalt normaler und atheromatoser Aorten an Cholesterol und Cholesterinester. Z. Physiol. Chem. 67, 174 (1910).
5.Anitschkow, N. & Chalatow, S. Ueber experimentelle Cholester-insteatose und ihre Bedeutung fuer die Entstehung einiger pathologischer Prozesse. Zentrbl Allg. Pathol. Pathol. Anat. 24, 1–9 (1913).
6.Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).
7.Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015).
8.Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).
9.Boren, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).
10.Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).
11.Ference, B. A., Graham, I., Tokgozoglu, L. & Catapano, A. L. Impact of lipids on cardiovascular health: JACC Health Promotion Series. J. Am. Coll. Cardiol. 72, 1141–1156 (2018).
12.Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).
13.Baigent, C. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).
14.Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).
15.Silverman, M. G. et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316, 1289–1297 (2016).
16.Nicholls, S. J. et al. Effect of two intensive statin regimens on progression of coronary disease. N. Engl. J. Med. 365, 2078–2087 (2011).
17.Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).
18.Ference, B. A. et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J. Am. Coll. Cardiol. 60, 2631–2639 (2012).
19.Braunwald, E. How to live to 100 before developing clinical coronary artery disease: a suggestion. Eur. Heart J. 43, 249–250 (2021).
20.Ference, B. A., Ference, T. B., Catapano, A. L., Nicholls, S. J. & Ray, K. K. A naturally randomized trial evaluating a vaccine-like strategy to lower LDL by inhibiting PCSK9 on the lifetime risk of major cardiovascular events (NATURE-PCSK9). Preprint at Medrxiv https://doi.org/10.1101/2024.06.30.24309740 (2024).
21.Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).
22.Sniderman, A. D. et al. Apolipoprotein B particles and cardiovascular disease: a narrative review. JAMA Cardiol. 4, 1287–1295 (2019).
23.Ference, B. A., Kastelein, J. J. P. & Catapano, A. L. Lipids and lipoproteins in 2020. JAMA 324, 595–596 (2020).
24.Stender, S. & Zilversmit, D. B. Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits. Molecular size as a determinant of plasma lipoprotein influx. Arteriosclerosis 1, 38–49 (1981).
25.Zanoni, P., Velagapudi, S., Yalcinkaya, M., Rohrer, L. & von Eckardstein, A. Endocytosis of lipoproteins. Atherosclerosis 275, 273–295 (2018).
26.Camejo, G., Lalaguna, F., Lopez, F. & Starosta, R. Characterization and properties of a lipoprotein-complexing proteoglycan from human aorta. Atherosclerosis 35, 307–320 (1980).
27.Camejo, G., Hurt-Camejo, E., Wiklund, O. & Bondjers, G. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 139, 205–222 (1998).
28.Boren, J. et al. Identification of the principal proteoglycan-binding site in LDL. A single point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J. Clin. Invest. 101, 2658–2664 (1998).
29.Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).
30.Tabas, I., Williams, K. J. & Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).
31.Tabas, I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J. Clin. Invest. 110, 905–911 (2002).
32.Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).
33.Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).
34.Ambrose, J. A. et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol. 12, 56–62 (1988).
35.Herrick, J. B. Thrombosis of the coronary arteries. JAMA 72, 387–390 (1919).
36.Falk, E., Shah, P. K. & Fuster, V. Coronary plaque disruption. Circulation 92, 657–671 (1995).
37.Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).
38.Alderman, E. L. et al. Five-year angiographic follow-up of factors associated with progression of coronary artery disease in the Coronary Artery Surgery Study (CASS). CASS Participating Investigators and Staff. J. Am. Coll. Cardiol. 22, 1141–1154 (1993).
39.Emond, M. et al. Long-term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) Registry. Circulation 90, 2645–2657 (1994).
40.Williams, M. C. et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the multicenter SCOT-HEART trial (Scottish Computed Tomography of the HEART). Circulation 141, 1452–1462 (2020).
41.Newman, W. P. III et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. the Bogalusa Heart Study. N. Engl. J. Med. 314, 138–144 (1986).
42.Berenson, G. S. et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 338, 1650–1656 (1998).
43.Strong, J. P. et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 281, 727–735 (1999).
44.Fernandez-Friera, L. et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (Progression of Early Subclinical Atherosclerosis) study. Circulation 131, 2104–2113 (2015).
45.Tuzcu, E. M. et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation 103, 2705–2710 (2001).
46.Pletcher, M. J. et al. Nonoptimal lipids commonly present in young adults and coronary calcium later in life: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Ann. Intern. Med. 153, 137–146 (2010).
47.Fernandez-Friera, L. et al. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J. Am. Coll. Cardiol. 70, 2979–2991 (2017).
48.Glaser, R. et al. Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation 111, 143–149 (2005).
49.Maddox, T. M. et al. Nonobstructive coronary artery disease and risk of myocardial infarction. JAMA 312, 1754–1763 (2014).
50.Arbab-Zadeh, A. & Fuster, V. From detecting the vulnerable plaque to managing the vulnerable patient: JACC state-of-the-art review. J. Am. Coll. Cardiol. 74, 1582–1593 (2019).
51.Burke, A. P. et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103, 934–940 (2001).
52.Virmani, R., Burke, A. P., Farb, A. & Kolodgie, F. D. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47, C13–C18 (2006).
53.Ference, B. A. & Mahajan, N. The role of early LDL lowering to prevent the onset of atherosclerotic disease. Curr. Atheroscler. Rep. 15, 312 (2013).
54.Robinson, J. G. et al. Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life. J. Am. Heart Assoc. 7, e009778 (2018).
55.Sniderman, A. D., Toth, P. P., Thanassoulis, G., Pencina, M. J. & Furberg, C. D. Taking a longer term view of cardiovascular risk: the causal exposure paradigm. BMJ 348, g3047 (2014).
56.McNamara, J. J., Molot, M. A., Stremple, J. F. & Cutting, R. T. Coronary artery disease in combat casualties in Vietnam. JAMA 216, 1185–1187 (1971).
57.McClelland, R. L., Chung, H., Detrano, R., Post, W. & Kronmal, R. A. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 113, 30–37 (2006).
58.Javaid, A. et al. Distribution of coronary artery calcium by age, sex, and race among patients 30-45 years old. J. Am. Coll. Cardiol. 79, 1873–1886 (2022).
59.Hartiala, O. et al. Life-course risk factor levels and coronary artery calcification. The Cardiovascular Risk in Young Finns Study. Int. J. Cardiol. 225, 23–29 (2016).
60.Bergstrom, G. et al. Prevalence of subclinical coronary artery atherosclerosis in the general population. Circulation 144, 916–929 (2021).
61.Gordon, T., Kannel, W. B., Hjortland, M. C. & McNamara, P. M. Menopause and coronary heart disease. The Framingham Study. Ann. Intern. Med. 89, 157–161 (1978).
62.Müller, C. Xanthomata, hypercholesterolemia, angina pectoris. Acta Med. Scand. 95, 75–84 (1938).
63.Wilkinson, C. F., Hand, E. A. & Fliegelman, M. T. Essential familial hypercholesterolemia. Ann. Intern. Med. 29, 671–686 (1948).
64.Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34, 3478–3490 (2013).
65.Cuchel, M. et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 35, 2146–2157 (2014).
66.Nissen, S. E. et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295, 1556–1565 (2006).
67.Nicholls, S. J. et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA 316, 2373–2384 (2016).
68.Nicholls, S. J. et al. Effect of evolocumab on coronary plaque composition. J. Am. Coll. Cardiol. 72, 2012–2021 (2018).
69.Ference, B. A. Mendelian randomization studies: using naturally randomized genetic data to fill evidence gaps. Curr. Opin. Lipidol. 26, 566–571 (2015).
70.Hingorani, A. & Humphries, S. Nature’s randomised trials. Lancet 366, 1906–1908 (2005).
71.Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med. 375, 2144–2153 (2016).
72.Ference, B. A., Majeed, F., Penumetcha, R., Flack, J. M. & Brook, R. D. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 x 2 factorial Mendelian randomization study. J. Am. Coll. Cardiol. 65, 1552–1561 (2015).
73.Ference, B. A. et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 321, 364–373 (2019).
74.Whyte, H. M. & Yee, I. L. Serum cholesterol levels of Australians and natives of New Guinea from birth to adulthood. Australas. Ann. Med. 7, 336–339 (1958).
75.Mendez, J., Tejada, C. & Flores, M. Serum lipid levels among rural Guatemalan Indians. Am. J. Clin. Nutr. 10, 403–409 (1962).
76.O’Keefe, J. H. Jr, Cordain, L., Harris, W. H., Moe, R. M. & Vogel, R. Optimal low-density lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal. J. Am. Coll. Cardiol. 43, 2142–2146 (2004).
77.Kaplan, H. et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet 389, 1730–1739 (2017).
78.Luirink, I. K. et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N. Engl. J. Med. 381, 1547–1556 (2019).
79.Wiegman, A. et al. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. JAMA 292, 331–337 (2004).
80.Kusters, D. M. et al. Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA 312, 1055–1057 (2014).
81.Wiegman, A. et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur. Heart J. 36, 2425–2437 (2015).
82.Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).
83.O’Donoghue, M. L. et al. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation 146, 1109–1119 (2022).84. Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).
84.Ference, B. A. et al. Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: an analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. Eur. Heart J. 39, 2540–2545 (2018).