郑刚教授:低密度脂蛋白累积暴露假说的相关证据(上篇)
2025-03-17 来源:医脉通
关键词: 低密度脂蛋白

动脉粥样硬化性心血管疾病(ASCVD)是全球发病和死亡的主要原因[1]。动脉粥样硬化是由动脉壁内携带胆固醇的低密度脂蛋白(LDL)和其他含载脂蛋白B(APOB)的脂蛋白的渐进沉积引起的[2-8]。随着时间的推移,越来越多的LDL颗粒被沉积在动脉壁内,由此产生的动脉粥样硬化斑块负荷会逐渐增加,发生ASCVD事件的风险也会增加[2-11]。因此,LDL和其他含APOB的脂蛋白对ASCVD的生物学效应取决于暴露的程度和持续时间[10-11]。随着时间的推移,保持低水平的LDL胆固醇(LDL-C),可减少被沉积在动脉壁内的致动脉粥样硬化脂蛋白的数量,减缓动脉粥样硬化的进展,并大大降低急性ASCVD事件的终生风险[12-18]


事实上,在降低LDL-C水平以预防动脉粥样硬化事件方面,一种共识正在形成,即“越低越好,越早越好”。尽管这一共识正在形成,但减少LDL的终生累积暴露以减缓动脉粥样硬化的进展并不是目前预防ASCVD的重点。然而,过去5年的两项科学进展首次使我们能够通过减少LDL-C的累积暴露来制定预防ASCVD的实用建议。首先,开发和批准了能够大幅持续降低LDL-C水平的新疗法,通过保持低水平的LDL-C来减缓动脉粥样硬化进展,从而预防ASCVD事件[19]。其次,已经开发出编码生物因果关系的新型深度学习和机器学习算法,以准确估计从任何年龄开始并持续到任何时间的降低LDL水平的益处[20]。这两项进展均突显了通过选择正确的LDL降低时间和强度来预防ASCVD事件的潜力,以减缓动脉粥样硬化进展,使其累积的LDL暴露量和相应的累积斑块负荷低于急性心血管事件(ACVE)发生的阈值。


本文描述了支持累积暴露假说的生物学和临床证据,并为测量LDL-C的累积暴露以及将其作为治疗靶点提供了理论基础。


1. 脂质、脂蛋白和动脉粥样硬化的生物学

尽管累积暴露假说适用于所有含APOB100的脂蛋白,但我们关注的是LDL,因为在大多数情况下,含APOB的脂蛋白在其生命周期的90%中都是LDL颗粒。因此,90%的循环中含APOB的脂蛋白是LDL颗粒。
在临床实践中,循环LDL颗粒的浓度可以直接测量或通过测量血浆LDL-C来估计,LDL-C是LDL颗粒携带的总胆固醇含量的估计值[21-23]。所有直径<90nm的含APOB的脂蛋白都可以通过转胞作用的主动过程自由穿过内皮屏障[24-25]

尽管这些脂蛋白中的绝大多数通过胞吐或淋巴系统返回循环,但一小部分通过附着蛋白多糖而被困在动脉壁内[26-28]。LDL和其他含APOB的脂蛋白被困在动脉壁内,随后其胆固醇含量被呈递给巨噬细胞,导致一系列炎症事件,这对动脉粥样硬化斑块形成的起始和进展都是必要的[29-33]

随着时间的推移,越来越多的脂蛋白被沉积在动脉壁内,积聚的斑块体积逐渐增大[34]。随着动脉粥样硬化斑块的扩大,它们会变得不稳定和紊乱,导致局部区域迅速扩大。因此,动脉粥样硬化的自然史的特征是斑块负荷逐渐增大,并伴有离散的快速局灶性生长。


身体对动脉粥样硬化斑块破裂的反应是形成血栓来密封斑块破裂并促进愈合。急性ASCVD事件,包括心肌梗死(MI)和缺血性卒中,发生在动脉粥样硬化斑块破裂上的血栓堵塞动脉血流,导致不可逆的缺血性损伤时[34-37]


2. LDL累积暴露

对动脉粥样硬化生物学的理解促使了LDL累积暴露假说的形成,该假说指出,累积斑块负荷的大小、斑块进展和个体在任何时间点发生ACVE的相应绝对风险由其累积LDL决定[10-11](图1)。这一假设解释了随着动脉粥样硬化斑块的积累,急性ASCVD事件的风险如何增加[10,23,38-48]。动脉粥样硬化在早期和中期有一个漫长的无症状期,此时循环的LDL颗粒逐渐被困在动脉壁内,积聚的斑块负荷的大小缓慢增加。


在此期间,不断增长的动脉粥样硬化斑块的大小保持适度。因此,即使斑块的局部区域变得不稳定和破裂,发生ACVE的风险也很低,因为形成的血栓不太可能阻断通过血管的血流。然而,当达到一定的LDL累积暴露阈值时,足够的脂蛋白被困在动脉壁内,使累积的动脉粥样硬化斑块足够大,如果局部区域变得不稳定并被破坏,上覆的血栓可能会堵塞血管,导致急性ASCVD事件[47-49]

随着更多的LDL颗粒继续被困在动脉壁内,斑块体积继续逐渐增大并富含脂质,发生ACVE的风险迅速增加[37]。事实上,在个体超过与心血管事件(CVE)开始发生时的累积斑块负荷大小相对应的累积LDL暴露阈值后,发生ACVE的风险会随着时间的推移呈对数增加,因为覆盖在破裂斑块上的血栓会阻碍动脉血流从而导致ACVE,其概率与破裂斑块体积成正比[40-52]


LDL累积暴露假说的主要临床意义是,通过减少LDL的累积暴露来减缓动脉粥样硬化的进展,可以有效预防ASCVD事件[53-55]。随着时间的推移,保持低对风险。事实上,有人提出,从生命早期开始减少LDL的累积暴露,可以减缓动脉粥样硬化的进展,从而将ACVE的发作推迟到生命的晚期,这可能会使ASCVD事件变得罕见(或至少不常见)[19]


微信图片_20250317202717.png

图1 LDL-C水平对斑块负荷和相应动脉粥样硬化CVE绝对风险的累积影响。

注:将个体随时间测量的LDL-C水平相加,得出以斑块年(mmol/l或mg/dl)测量的LDL累积暴露量。LDL的累积暴露反映了动脉壁随时间暴露的循环脂蛋白的数量,从而决定了被困在动脉内的脂蛋白数量,这反过来又决定了累积斑块负荷的大小和在任何时间点发生重大不良心血管事件(MACE)的绝对风险。a部分显示了假设的LDL累积暴露量、累积斑块负荷的大小以及血浆LDL-C水平高的个体在任何年龄发生MACE的相应绝对风险。b部分显示了低血浆LDL-C水平个体的相同信息。与LDL-C水平较高的个体相比,血浆LDL-C水平较低会导致更少的LDL颗粒被困在动脉壁内,斑块进展较慢,累积斑块负荷较小,所有年龄段的MACE风险较低。弯曲的箭头表示脂蛋白穿过内皮屏障的转胞吞作用。

3. LDL累积效应的证据

多条证据支持LDL对ASCVD进展的累积效应。许多实验研究表明,通过转胞作用穿过内皮屏障的LDL颗粒浓度与LDL-C的血浆浓度成正比[25]。因此,随着时间的推移,流过内皮屏障并被困在动脉壁内的脂蛋白数量应与LDL的累积暴露量成正比。此外,对因非心血管原因死亡的青少年和年轻人的尸检研究通常表明,脂蛋白在动脉壁内积聚,表现为脂肪条纹和早期动脉粥样硬化病变,这些富含脂质病变的大小和复杂性似乎随着年龄的增长而增加。这些发现证实了这样一种假设,即LDL和其他含APOB的脂蛋白在动脉壁内的捕获始于生命的早期,并且由此产生的动脉粥样硬化斑块出现在ACVE发生之前,随着时间的推移逐渐扩大并变得更加复杂。


此外,非侵入性成像研究表明,在>40岁人群中,随着年龄增长,可检测到动脉粥样硬化斑块的人群比例逐渐增加。事实上,使用非侵入性成像,40岁时,大约15%的男性可以检测到冠状动脉粥样硬化,50岁时30%的男性可以检测到,60岁时65%的男性可以检到,70岁时检出比例可达到80%。女性患动脉粥样硬化斑块的分布与男性相同,但与男性相比或推迟大约十年后才出现,巧合的是ASCVD事件在女性中也大约十年后才发生[61]。这些影像学研究提供了直接证据,表明随着越来越多的脂蛋白被困在动脉壁内,个体的动脉粥样硬化斑块负担会随着时间的推移而缓慢进展,以应对LDL累积暴露的增加。


然而,也许最令人信服的证据来自大自然。从出生起,纯合子家族性高胆固醇血症(FH)患者的LDL-C水平就极高,从生命早期开始,LDL的累积暴露量急剧增加[62]。因此,他们会发展为早期和侵袭性动脉粥样硬化,在儿童和青年时期ASCVD事件的发生率很高[63-65]。相比之下,杂合子FH患者从出生起的循环LDL-C水平就没有那么极端,但仍然显著升高[63-65]。这些患者从成年早期到中期便暴露于非常高的LDL累积水平,与没有FH的年龄匹配个体相比,ACVE的发生率非常高。这些观察结果强烈支持累积暴露假说,并为LDL累积暴露与斑块负荷大小和ACVE风险之间的剂量反应关系提供了有力证据。


事实上,长期以来,LDL累积暴露的概念一直被用来描述FH患者的自然病史,并为其预后和治疗提供信息[63-65]。大多数临床实践指南建议,即使在没有随机试验证据的情况下,对于FH患者或因血浆LDL-C水平>5 mmol/l(190 mg/dl)而推测为FH的患者,也应尽早开始治疗以降低LDL-C水平,并将其降至尽可能低的水平,因为这些患者被认为具有极高的终生ASCVD事件风险,这是由非常高的累积终生LDL暴露引起的。


4. 减少LDL累积暴露的益处

许多血管内超声(IVUS)研究评估了通过上调LDL受体以降低循环LDL颗粒浓度来降低LDL-C水平的治疗方法[66-68]。这些研究一致表明,降低LDL水平可以减缓动脉粥样硬化进展,其程度与LDL-C水平的绝对降低成正比,并表明通过将循环LDL水平降低到一定阈值以下,可以潜在地阻止斑块进展。


此外,孟德尔随机化研究证明,随着时间的推移,保持较低水平的LDL-C可以大大降低CVE的终生风险[69-70]。与没有这些遗传变异的个体相比,具有导致LDL-C水平较低的遗传变异的个人在所有年龄段的LDL-C累积终生暴露量较低,ASCVD事件的终生风险也相应较低[10,18,71-73]。对于所有降低LDL水平(或一般含APOB的脂蛋白水平)的遗传变异,包括编码各种降脂治疗靶点的基因变异[18,71-73],观察到的LDL-C水平降低的心血管风险降低几乎相同。这一发现表明,在这些孟德尔随机化研究中观察到的CVE风险降低是由LDL和其他含APOB脂蛋白的循环水平较低引起的,而不是由这些脂蛋白携带的特定遗传变异或胆固醇或甘油三酯含量引起的[10,18,73]。这些发现强化了这样一个概念,即减缓动脉粥样硬化进展和降低ASCVD事件风险的是LDL的较低累积暴露量,而不是LDL携带的胆固醇含量(LDL-C)的较低累计暴露量。

此外,孟德尔随机化研究表明,与在生命后期(平均年龄65岁)开始评估LDL-C增强疗法的随机试验中观察到的事件减少相比,在LDL-C水平降低的情况下,终身接触LDL的程度较低与CVE风险降低2~3倍有关[10,12,17-18]。这一发现通过证明降低LDL-C水平的益处取决于降低的幅度和持续时间,为累积暴露不足提供了进一步的支持。重要的是,孟德尔随机化研究的结果得到了现实世界证据的支持。例如,来自偏远和农村社区的个体,如果他们食用自给性饮食,一生中LDL-C水平都很低,患ASCVD的终生风险也很低[74-77]


患有FH的年轻人从儿童时期开始接受他汀类药物治疗以降低LDL-C水平,其CVE的风险明显低于78~81岁未接受治疗的患有家族性高胆固醇血症的父母。这些研究中观察到的风险降低幅度远大于观察到的LDL-C降低的预期,从而直接支持了孟德尔随机化研究的证据。事实上,有明确的证据表明,降低LDL-C水平的益处随着LDL-C降低的时间延长而增加。在随机试验中,通过使用他汀类药物抑制羟甲基戊二酰辅酶a还原酶或通过使用单克隆抗体抑制前蛋白转化酶枯草杆菌蛋白酶9型(PCSK9)来降低LDL-C水平,在治疗的第一年和第二年分别将主要不良心血管事件(MACE)风险降低了10%和20%,因此,在治疗2年后,他汀类药物和PCSK9抑制剂每降低1mmol/L的LDL-C水平,都将MACE的风险降低15%[12-13,81-84]。在他汀类三联疗法中,治疗3年后,LDL-C水平每降低1mmol/L,这一益处增加到18%,4年后增加到20%,5年后减少到22%[12-13,82-86]。此外,有令人信服的证据表明,降低LDL-C水平的临床益处随着治疗时间的延长而持续增加,远远超过随机试验中观察到的LDL-C降低持续时间。


2017年,欧洲动脉粥样硬化学会总结了LDL对ASCVD事件风险的因果关系的全部证据[10]。该总结包括200多项研究,这些研究共招募了200多万名CVE超过20万起、随访时间超过2 000万人年的参与者。分析显示,较低的LDL-C水平与较低的ASCVD事件风险之间存在一致的、剂量依赖性的、对数线性关联。此外,观察到的益处幅度随着LDL暴露时间的延长而逐渐增加,从随机试验中随访5年后LDL-C水平每降低1 mmol/L,主要冠状动脉事件风险降低22%,到前瞻性观察队列研究中随访15年后风险降低33%,到孟德尔随机化研究中观察到终身暴露于较低LDL-C的风险降低50~55%。


专家简介


屏幕截图 2025-03-17 203335.png

郑刚 教授

•现任泰达国际心血管病医院特聘专家,济兴医院副院长

•中国高血压联盟理事,中国心力衰竭学会委员,中国老年医学会高血压分会天津工作组副组长、中国医疗保健国际交流促进会高血压分会委员。天津医学会心血管病专业委员会委员,天津医学会老年病专业委员会常委。天津市医师协会高血压专业委员会常委,天津市医师协会老年病专业委员会委员,天津市医师协会心力衰竭专业委员,天津市医师协会心血管内科医师分会双心专业委员会委员。天津市心脏学会理事、天津市心律学会第一届委员会委员,天津市房颤中心联盟常委。天津市医药学专家协会第一届心血管专业委员会委员,天津市药理学会临床心血管药理专业委员会常委。天津市中西医结合学会心血管疾病专业委员会常委

•《中华老年心脑血管病杂志》编委,《中华临床 医师杂志》(电子版)特邀审稿专家,《中华诊断学电子杂志》审稿专家,《华夏医学》杂志副主编,《中国心血管杂志》常务编委,《中国心血管病研究》杂志第四届编委,《世界临床药物》杂志编委、《医学综述》杂志会编委、《中国医药导报》杂志编委、《中国现代医生》杂志编委、《心血管外科杂志(电子版)》审稿专家

•本人在专业期刊和心血管网发表文章948篇其中第一作者759篇,参加著书11部

•获天津市2005年度“五一劳动奖章和奖状” 和 “天津市卫生行业第二届人民满意的好医生”称号

参考文献
1.Khan, M. A. et al. Global epidemiology of ischemic heart disease: results from the Global Burden of Disease Study. Cureus 12, e9349 (2020).
2.Marchand, F. Ueber atherosclerosis. Verhandlungen der Kongresse fuer Innere Medizin. 21 Kongresse (1904).
3.Ignatowski, A. I. Ueber die Wirkung der tierschen Einweisse auf der Aorta. Virchows Arch. Pathol. Anat. 198, 248 (1909).
4.Windaus, A. Ueber der Gehalt normaler und atheromatoser Aorten an Cholesterol und Cholesterinester. Z. Physiol. Chem. 67, 174 (1910).
5.Anitschkow, N. & Chalatow, S. Ueber experimentelle Cholester-insteatose und ihre Bedeutung fuer die Entstehung einiger pathologischer Prozesse. Zentrbl Allg. Pathol. Pathol. Anat. 24, 1–9 (1913).
6.Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).
7.Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015).
8.Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).
9.Boren, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).
10.Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).
11.Ference, B. A., Graham, I., Tokgozoglu, L. & Catapano, A. L. Impact of lipids on cardiovascular health: JACC Health Promotion Series. J. Am. Coll. Cardiol. 72, 1141–1156 (2018).
12.Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).
13.Baigent, C. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).
14.Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).
15.Silverman, M. G. et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316, 1289–1297 (2016).
16.Nicholls, S. J. et al. Effect of two intensive statin regimens on progression of coronary disease. N. Engl. J. Med. 365, 2078–2087 (2011).
17.Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).
18.Ference, B. A. et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J. Am. Coll. Cardiol. 60, 2631–2639 (2012).
19.Braunwald, E. How to live to 100 before developing clinical coronary artery disease: a suggestion. Eur. Heart J. 43, 249–250 (2021).
20.Ference, B. A., Ference, T. B., Catapano, A. L., Nicholls, S. J. & Ray, K. K. A naturally randomized trial evaluating a vaccine-like strategy to lower LDL by inhibiting PCSK9 on the lifetime risk of major cardiovascular events (NATURE-PCSK9). Preprint at Medrxiv https://doi.org/10.1101/2024.06.30.24309740 (2024).
21.Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).
22.Sniderman, A. D. et al. Apolipoprotein B particles and cardiovascular disease: a narrative review. JAMA Cardiol. 4, 1287–1295 (2019).
23.Ference, B. A., Kastelein, J. J. P. & Catapano, A. L. Lipids and lipoproteins in 2020. JAMA 324, 595–596 (2020).
24.Stender, S. & Zilversmit, D. B. Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits. Molecular size as a determinant of plasma lipoprotein influx. Arteriosclerosis 1, 38–49 (1981).
25.Zanoni, P., Velagapudi, S., Yalcinkaya, M., Rohrer, L. & von Eckardstein, A. Endocytosis of lipoproteins. Atherosclerosis 275, 273–295 (2018).
26.Camejo, G., Lalaguna, F., Lopez, F. & Starosta, R. Characterization and properties of a lipoprotein-complexing proteoglycan from human aorta. Atherosclerosis 35, 307–320 (1980).
27.Camejo, G., Hurt-Camejo, E., Wiklund, O. & Bondjers, G. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 139, 205–222 (1998).
28.Boren, J. et al. Identification of the principal proteoglycan-binding site in LDL. A single point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J. Clin. Invest. 101, 2658–2664 (1998).
29.Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).
30.Tabas, I., Williams, K. J. & Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).
31.Tabas, I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J. Clin. Invest. 110, 905–911 (2002).
32.Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).
33.Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).
34.Ambrose, J. A. et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol. 12, 56–62 (1988).
35.Herrick, J. B. Thrombosis of the coronary arteries. JAMA 72, 387–390 (1919).
36.Falk, E., Shah, P. K. & Fuster, V. Coronary plaque disruption. Circulation 92, 657–671 (1995).
37.Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).
38.Alderman, E. L. et al. Five-year angiographic follow-up of factors associated with progression of coronary artery disease in the Coronary Artery Surgery Study (CASS). CASS Participating Investigators and Staff. J. Am. Coll. Cardiol. 22, 1141–1154 (1993).
39.Emond, M. et al. Long-term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) Registry. Circulation 90, 2645–2657 (1994).
40.Williams, M. C. et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the multicenter SCOT-HEART trial (Scottish Computed Tomography of the HEART). Circulation 141, 1452–1462 (2020).
41.Newman, W. P. III et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. the Bogalusa Heart Study. N. Engl. J. Med. 314, 138–144 (1986).
42.Berenson, G. S. et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 338, 1650–1656 (1998).
43.Strong, J. P. et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 281, 727–735 (1999).
44.Fernandez-Friera, L. et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (Progression of Early Subclinical Atherosclerosis) study. Circulation 131, 2104–2113 (2015).
45.Tuzcu, E. M. et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation 103, 2705–2710 (2001).
46.Pletcher, M. J. et al. Nonoptimal lipids commonly present in young adults and coronary calcium later in life: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Ann. Intern. Med. 153, 137–146 (2010).
47.Fernandez-Friera, L. et al. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J. Am. Coll. Cardiol. 70, 2979–2991 (2017).
48.Glaser, R. et al. Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation 111, 143–149 (2005).
49.Maddox, T. M. et al. Nonobstructive coronary artery disease and risk of myocardial infarction. JAMA 312, 1754–1763 (2014).
50.Arbab-Zadeh, A. & Fuster, V. From detecting the vulnerable plaque to managing the vulnerable patient: JACC state-of-the-art review. J. Am. Coll. Cardiol. 74, 1582–1593 (2019).
51.Burke, A. P. et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103, 934–940 (2001).
52.Virmani, R., Burke, A. P., Farb, A. & Kolodgie, F. D. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47, C13–C18 (2006).
53.Ference, B. A. & Mahajan, N. The role of early LDL lowering to prevent the onset of atherosclerotic disease. Curr. Atheroscler. Rep. 15, 312 (2013).
54.Robinson, J. G. et al. Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life. J. Am. Heart Assoc. 7, e009778 (2018).
55.Sniderman, A. D., Toth, P. P., Thanassoulis, G., Pencina, M. J. & Furberg, C. D. Taking a longer term view of cardiovascular risk: the causal exposure paradigm. BMJ 348, g3047 (2014).
56.McNamara, J. J., Molot, M. A., Stremple, J. F. & Cutting, R. T. Coronary artery disease in combat casualties in Vietnam. JAMA 216, 1185–1187 (1971).
57.McClelland, R. L., Chung, H., Detrano, R., Post, W. & Kronmal, R. A. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 113, 30–37 (2006).
58.Javaid, A. et al. Distribution of coronary artery calcium by age, sex, and race among patients 30-45 years old. J. Am. Coll. Cardiol. 79, 1873–1886 (2022).
59.Hartiala, O. et al. Life-course risk factor levels and coronary artery calcification. The Cardiovascular Risk in Young Finns Study. Int. J. Cardiol. 225, 23–29 (2016).
60.Bergstrom, G. et al. Prevalence of subclinical coronary artery atherosclerosis in the general population. Circulation 144, 916–929 (2021).
61.Gordon, T., Kannel, W. B., Hjortland, M. C. & McNamara, P. M. Menopause and coronary heart disease. The Framingham Study. Ann. Intern. Med. 89, 157–161 (1978).
62.Müller, C. Xanthomata, hypercholesterolemia, angina pectoris. Acta Med. Scand. 95, 75–84 (1938).
63.Wilkinson, C. F., Hand, E. A. & Fliegelman, M. T. Essential familial hypercholesterolemia. Ann. Intern. Med. 29, 671–686 (1948).
64.Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34, 3478–3490 (2013).
65.Cuchel, M. et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 35, 2146–2157 (2014).
66.Nissen, S. E. et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295, 1556–1565 (2006).
67.Nicholls, S. J. et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA 316, 2373–2384 (2016).
68.Nicholls, S. J. et al. Effect of evolocumab on coronary plaque composition. J. Am. Coll. Cardiol. 72, 2012–2021 (2018).
69.Ference, B. A. Mendelian randomization studies: using naturally randomized genetic data to fill evidence gaps. Curr. Opin. Lipidol. 26, 566–571 (2015).
70.Hingorani, A. & Humphries, S. Nature’s randomised trials. Lancet 366, 1906–1908 (2005).
71.Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med. 375, 2144–2153 (2016).
72.Ference, B. A., Majeed, F., Penumetcha, R., Flack, J. M. & Brook, R. D. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 x 2 factorial Mendelian randomization study. J. Am. Coll. Cardiol. 65, 1552–1561 (2015).
73.Ference, B. A. et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 321, 364–373 (2019).
74.Whyte, H. M. & Yee, I. L. Serum cholesterol levels of Australians and natives of New Guinea from birth to adulthood. Australas. Ann. Med. 7, 336–339 (1958).
75.Mendez, J., Tejada, C. & Flores, M. Serum lipid levels among rural Guatemalan Indians. Am. J. Clin. Nutr. 10, 403–409 (1962).
76.O’Keefe, J. H. Jr, Cordain, L., Harris, W. H., Moe, R. M. & Vogel, R. Optimal low-density lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal. J. Am. Coll. Cardiol. 43, 2142–2146 (2004).
77.Kaplan, H. et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet 389, 1730–1739 (2017).
78.Luirink, I. K. et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N. Engl. J. Med. 381, 1547–1556 (2019).
79.Wiegman, A. et al. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. JAMA 292, 331–337 (2004).
80.Kusters, D. M. et al. Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA 312, 1055–1057 (2014).
81.Wiegman, A. et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur. Heart J. 36, 2425–2437 (2015).
82.Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).
83.O’Donoghue, M. L. et al. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation 146, 1109–1119 (2022).84. Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).
84.Ference, B. A. et al. Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: an analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. Eur. Heart J. 39, 2540–2545 (2018).

(本网站所有内容,凡注明来源为“医脉通”,版权均归医脉通所有,未经授权,任何媒体、网站或个人不得转载,否则将追究法律责任,授权转载时须注明“来源:医脉通”。本网注明来源为其他媒体的内容为转载,转载仅作观点分享,版权归原作者所有,如有侵犯版权,请及时联系我们。)

2
收藏 分享