Genetic analysis for a shared biological basis between migraine and coronary artery disease

ABSTRACT

Objective: To apply genetic analysis of genome-wide association data to study the extent and nature of a shared biological basis between migraine and coronary artery disease (CAD).

Methods: Four separate methods for cross-phenotype genetic analysis were applied on data from 2 large-scale genome-wide association studies of migraine (19,981 cases, 56,667 controls) and CAD (21,076 cases, 63,014 controls). The first 2 methods quantified the extent of overlapping risk variants and assessed the load of CAD risk loci in migraineurs. Genomic regions of shared risk were then identified by analysis of covariance patterns between the 2 phenotypes and by querying known genome-wide significant loci.

Results: We found a significant overlap of genetic risk loci for migraine and CAD. When stratified by migraine subtype, this was limited to migraine without aura, and the overlap was protective in that patients with migraine had a lower load of CAD risk alleles than controls. Genes indicated by 16 shared risk loci point to mechanisms with potential roles in migraine pathogenesis and CAD, including endothelial dysfunction (PHACTR1) and insulin homeostasis (GIP).

Conclusions: The results suggest that shared biological processes contribute to risk of migraine and CAD, but surprisingly this commonality is restricted to migraine without aura and the impact is in opposite directions. Understanding the mechanisms underlying these processes and their opposite relationship to migraine and CAD may improve our understanding of both disorders. *Neurol Genet* 2015;1:e10; doi: 10.1212/NXG.0000000000000010

GLOSSARY

CAD = coronary artery disease, CARDIoGRAM = Coronary ARtery Disease Genome-Wide Replication And Meta-Analysis, CPSM = Cross-Phenotype Spatial Mapping, GWAS = genome-wide association studies, IHGC = International Headache Genetics Consortium, LD = linkage disequilibrium, MA = migraine with aura, MO = migraine without aura, SNP = single nucleotide polymorphism.

Migraine affects 19% of women and 11% of men worldwide and causes more years lost to disability than any other neurologic disorder. In about one-third of patients, headache attacks are preceded by transient neurologic symptoms termed migraine aura, and migraine with and without aura (MA and MO, respectively) are believed to have a partially distinct pathogenic basis. It has long been assumed that the vascular system is involved in migraine pathogenesis, but little is known of the specific biological processes involved, and the relative importance of neuronal and vascular mechanisms remains controversial. Supporting a vascular basis, epidemiologic studies have found an increased risk for stroke among patients with migraine, most pronounced for MA. Some recent studies indicate a similar risk increase for coronary artery disease (CAD), the most common vascular disorder, although the association is less certain than for stroke. This raises the question of whether migraine and cardiovascular disease have a shared biological basis.

Both migraine and CAD have a strong genetic determination, and recent genome-wide association studies (GWAS) have identified risk variants for each. If migraine and CAD have a shared biological basis, one might anticipate that they will also share genetic variants that affect their risk. In this study, we utilized data from 2 large-scale nonoverlapping GWAS meta-analyses of migraine (the International Headache Genetics Consortium, IHGC) and CAD (Coronary ARtery Disease Genome-Wide Replication And Meta-Analysis, CARDIoGRAM) to quantify shared genetic risk.

METHODS Study cohorts. Summary statistics (p value and effect size) at single nucleotide polymorphism (SNP) level from 2 recently performed meta-analyses of genome-wide association data on migraine (IHGC) and CAD (CARDIoGRAM) were used in

*These authors contributed equally to the manuscript.

Author affiliations are provided at the end of the article. Funding information and disclosures are provided at the end of the article. Go to *Neurology.org/ng* for full disclosure forms. The Article Processing Charge was paid by the authors. The CARDIoGRAM Consortium and the International Headache Genetics Consortium coinvestigators are listed at *Neurology.org/ng*.

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Sekar Kathiresan, MD
Terho Lehtimäki, MD
Ruth McPherson, PhD
Winfried März, PhD
Dale R. Nyholt, PhD
Christopher J. O’Donnell, MD
Lydia Quaye, PhD
Daniel J. Rader, PhD
Olli Raitakari, PhD
Daniel J. Rader, MD
Lydia Quaye, PhD
Christopher J. O’Donnell, MD

Neurology: Genetics
at Neurology.org/ng
See editorial
Supplemental data at Neurology.org/ng

© 2015 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
MO (p = 1.5 × 10^{-4} and 5.1 × 10^{-4} for the moderate and strong CAD risk SNP sets, respectively). No association was seen for MA. In the analysis of the weak CAD risk SNP set, there was no association to CAD genetic risk score for either migraine category, indicating that the observed associations were driven by a fairly limited number of loci that are at least moderately associated with CAD. These findings were consistent across men and women (figure e-2) and across individual independent cohorts within the same migraine subtype (figure e-3).

CPSM yielded 16 loci that overlapped between migraine and CAD (table 2; figure e-4). Details of the most significant migraine and CAD SNPs at each locus are given in table e-5. The strongest evidence of shared association was seen at 6p24 (locus no. 2), where both CAD and migraine showed genome-wide significant signals within the PHACTR1 gene (CAD: rs4714955, p = 9.8 × 10^{-11}; migraine: rs9349379, p = 5.9 × 10^{-9}). The second strongest overlapping signal was on 17q21 (locus no. 2), where the lead CAD SNP (rs46522, p = 2.6 × 10^{-7}) was intragenic in UBE2Z, whereas the lead migraine SNP (rs11079844, p = 3.1 × 10^{-3}) was intergenic between SNF8 and GIP. It is interesting that both lead SNPs are in high LD (r^2 > 0.9) with 2 functional variants in GIP: Ser103Gly (rs2291725) and a splice site variant (rs2291726) that is predicted to lead to a prematurely truncated transcript^{18} (table e-6). The locus was also found to have a potential effect on the expression level of UBE2Z (table e-7). Lead SNPs in 5 loci were in high LD (r^2 > 0.8) with nonsynonymous or splice site variants in nearby genes (table e-6). Ten of the 16 loci showed opposite direction of effect for migraine and CAD. In the secondary analyses, 12 of the 16 lead migraine SNPs had a lower association p value in MO than in MA (2-tailed binomial p = 0.08), and all 16 SNPs

CPSM = Cross-Phenotype Spatial Mapping.
had the same effect direction in each of the 2 migraine subtypes. Local Manhattan plots and covariance plots for the identified loci are given in figure e-4.

When considering previously reported risk loci for migraine and CAD, 3 CAD risk SNPs were associated to migraine at study-wide significance, and 2 migraine risk SNPs were associated to CAD (table 3). These correspond to loci no. 1, 2, 3, 11, and 14 as identified by the CPSM method and corroborate the evidence for shared genetic risk at these loci.

DISCUSSION

In this study, we used data from 2 recently performed large-scale nonoverlapping GWAS to examine shared genetic risk between migraine and CAD. We found that association signals overlapped in excess of what would be expected by chance. Stratifying by migraine subtype further revealed that MO and MA behaved differently. MO had a genetic overlap with CAD, whereas MA did not. These results are unexpected, given the epidemiologic evidence that comorbidity with CAD is more common in MA than MO. Patients with MA were found to have a 2-fold increased risk for CAD, and an increased risk for CAD-related mortality, although one cross-sectional study failed to find an association between

Table 1 Analysis of the extent of overlapping signals between migraine and CAD

<table>
<thead>
<tr>
<th>Signal definition (p value cutoff)</th>
<th>Overlapping SNPs</th>
<th>p Value for overlap (Fisher exact test)*</th>
<th>p Value for overlap (permutation test)*</th>
<th>Concordance of overlapping SNPsb</th>
<th>Binomial p value for concordance</th>
</tr>
</thead>
<tbody>
<tr>
<td>All migraine (total no. SNPs: 92,654)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E-2</td>
<td>146</td>
<td>1.1E-05c</td>
<td>6.0E-05c</td>
<td>0.534</td>
<td>0.18</td>
</tr>
<tr>
<td>1E-3</td>
<td>7</td>
<td>0.099</td>
<td>0.056</td>
<td>0.571</td>
<td>0.23</td>
</tr>
<tr>
<td>1E-4</td>
<td>2</td>
<td>9.3E-03c</td>
<td>7.9E-03c</td>
<td>0</td>
<td>0.75</td>
</tr>
<tr>
<td>1E-5</td>
<td>1</td>
<td>0.014</td>
<td>2.1E-04c</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>1E-6</td>
<td>1</td>
<td>5.2E-03c</td>
<td>3.5E-03c</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>Migraine without aura (total no. SNPs: 83,373)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E-2</td>
<td>113</td>
<td>1.6E-04c</td>
<td>1.5E-05c</td>
<td>0.510</td>
<td>0.87</td>
</tr>
<tr>
<td>1E-3</td>
<td>8</td>
<td>1.3E-03c</td>
<td>1.1E-04c</td>
<td>0.442</td>
<td>0.86</td>
</tr>
<tr>
<td>1E-4</td>
<td>3</td>
<td>2.0E-04c</td>
<td>1.5E-05c</td>
<td>0.250</td>
<td>0.88</td>
</tr>
<tr>
<td>1E-5</td>
<td>1</td>
<td>8.5E-03c</td>
<td>1.5E-05c</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>1E-6</td>
<td>1</td>
<td>3.0E-03c</td>
<td>1.5E-05c</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>Migraine with aura (total no. SNPs: 88,031)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E-2</td>
<td>107</td>
<td>0.13</td>
<td>0.11</td>
<td>0.523</td>
<td>0.28</td>
</tr>
<tr>
<td>1E-3</td>
<td>1</td>
<td>1.0</td>
<td>0.64</td>
<td>0.523</td>
<td>0.50</td>
</tr>
<tr>
<td>1E-4</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1E-5</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1E-6</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviations: CAD = coronary artery disease; NA = not applicable; SNP = single nucleotide polymorphism.

*False discovery rate corrected p values.

Proportion of overlapping association signals having the same direction of effect in migraine and CAD.

c $p < 0.01$.

Figure 2 Association between coronary artery disease polygenic risk score and the presence of migraine

Results are given as odds ratios with 95% confidence intervals. Separate lines are shown for all migraine (blue), migraine without aura (green), and migraine with aura (red). The coronary artery disease (CAD) polygenic risk score was calculated based on single nucleotide polymorphisms (SNPs) with weak ($p < 1 \times 10^{-2}$), moderate ($p < 1 \times 10^{-4}$), or strong ($p < 5 \times 10^{-8}$) association to CAD in the Coronary ARtery Disease Genome-Wide Replication And Meta-Analysis study.
CAD and any migraine subtype. Studies not differentiating on migraine subtype have been less conclusive, with some but not others indicating an increased risk of CAD related to migraine overall.

For MO, we found a clear overlap of association signals with CAD, whichever value cutoff was used to define signals. Intriguingly, the impact was in the opposite direction, in that patients with MO had a lower load of CAD risk alleles than migraine-free controls. This association seemed to be driven by a limited number of loci. Only a proportion of the included migraine patients were phenotyped in sufficient detail to allow subclassification into MA or MO. When using the considerably larger set of all migraine patients, a similar association was seen as for MO, likely driven by this migraine subtype. While the results suggest that there are shared common risk variants between migraine and CAD, they do not indicate that these variants explain comorbidity between the 2 disorders.

The opposite direction of effect for some of the loci is consistent with a recent GWAS in which the migraine and CAD risk SNP rs9349379 (in PHACTRI) was associated with cervical artery dissection, with effect in the same direction as for migraine but opposite of CAD. Two further migraine SNPs showed evidence of association to cervical artery dissection with the same effect direction as for migraine (rs11172113 in LRPI and rs13208321 in FHL5, the latter identified as locus 3 in the current study) but opposite direction for CAD.

The significant sharing of risk loci between migraine and CAD may reflect that they involve some of the same biological processes. Experimental studies will be needed to clarify this and whether the shared risk loci can give information on vascular mechanisms involved in migraine pathogenesis.

The lack of overlapping association signals between MA and CAD may indicate that the 2 disorders have separate and nonrelated genetic backgrounds. However, it may also result from insufficient power to detect shared common genetic risk factors for this migraine subtype. This is consistent with the relative failure so far in identifying common risk variants for MA; despite at least as high heritability and comparable study sample sizes, only one genome-wide significant locus has been identified.
Table 3: Cross-analysis of loci previously reported to show genome-wide significant association with migraine or CAD

<table>
<thead>
<tr>
<th>Lead SNP</th>
<th>Chr band</th>
<th>Reported gene(s)</th>
<th>CAD</th>
<th>Migraine</th>
<th>Migraine without aura</th>
<th>Migraine with aura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p Value</td>
<td>Odds ratio (SE)</td>
<td>p Value</td>
<td>Odds ratio (SE)</td>
<td>Dir.*</td>
<td>p Value</td>
</tr>
<tr>
<td>Previously reported loci for migraine in the CAD sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs9349379</td>
<td>6p24</td>
<td>PHACTR1</td>
<td>8.97E-08</td>
<td>1.1 (0.019)</td>
<td></td>
<td>5.88E-09</td>
</tr>
<tr>
<td>rs10504861</td>
<td>8q21</td>
<td>MMP16</td>
<td>1.96E-03</td>
<td>1.06 (0.02)</td>
<td></td>
<td>1.71E-03</td>
</tr>
<tr>
<td>rs13208321</td>
<td>6q16</td>
<td>FHL5</td>
<td>2.53E-03</td>
<td>1.05 (0.018)</td>
<td></td>
<td>1.41E-10</td>
</tr>
</tbody>
</table>

Previously reported loci for CAD in the migraine sample

Lead SNP	Chr band	Reported gene(s)	p Value	Odds ratio (SE)	Dir.*	p Value	Odds ratio (SE)	Dir.*
-------------	----------	------------------	--------------	-----------------	----------			
rs12526453	6p24	PHACTR1	9.72E-09	1.09 (0.017)		8.18E-06	0.94 (0.013)	
rs46522	17q21	UBE2Z	2.58E-07	0.93 (0.013)		1.24E-04	1.05 (0.013)	

Abbreviations: Chr = chromosome; CAD = coronary artery disease; SNP = single nucleotide polymorphism.

Only SNPs with significant association to the other phenotype after Bonferroni correction are shown (p < 0.0038 for previously reported migraine loci in the CAD sample, and p < 0.0023 for previously reported CAD loci in the migraine sample). p values may differ from those reported in the original studies since overlapping samples were excluded in the current study.

Direction of effect: SNPs with the same effect direction for association to CAD and migraine are marked as plus (+), opposing effect direction is marked as minus (−).

Significant cross-phenotype p value.

sensitize the insulin response.38 It is also expressed in neuronal progenitor cells.39 Whether the brain, where it may be involved in proliferation of vasomotor dysfunctions has been implicated in migraine,36,37 and this locus offers a potential focus for future studies. Alternatively, the pleiotropic effects of this gene on both synaptic and vascular functions may give rise to independent causal pathways for the 2 disorders.

The second strongest overlapping region (locus 2) is a previously identified risk locus for CAD (rs11079444) and migraine variants (rs46522) and migraine variants are in strong LD (r² > 0.9) with 2 potentially functional variants (rs11079444 and rs46522). The lead SNP (rs11079444) is entirely intragenic in its potential overlap with cardiovascular disease.

Six of the overlapping loci have previously been associated with MA, compared to 9 for MO. It is possible that MA is a more heterogeneous disorder, or is influenced by rare and low-frequency variants not captured by current imputation panels. Larger studies that also interrogate rare variants will be needed to determine the genetic basis of MA and its potential overlap with cardiovascular disease.

This prevented us from performing another imputation and meta-analysis of the migraine GWAS data, which also interrogate rare variants.

PHACTR1 has been identified as a key regulator of endothelial function, including endothelial cell survival and angiogenesis.34 More recently, PHACTR1 has been shown to be expressed in the brain and its transcript is an important regulator of synaptic activity and dendritic morphology through the control of protein phosphatase 1 and actin binding protein phosphatase 1 and protein phosphatase 2A. It has also been associated with coronary artery calcification and stroke.31,32 PHACTR1 is highly expressed in the brain and its transcript is an important regulator of synaptic activity and dendritic morphology through the control of protein phosphatase 1 and actin binding protein phosphatase 1 and protein phosphatase 2A. It has also been associated with coronary artery calcification and stroke.31,32

CAUSE OF NOT FOUND 2 OF 2

Abbreviations: Chr = chromosome; CAD = coronary artery disease; SNP = single nucleotide polymorphism.

Only SNPs with significant association to the other phenotype after Bonferroni correction are shown (p < 0.0038 for previously reported migraine loci in the CAD sample, and p < 0.0023 for previously reported CAD loci in the migraine sample). p values may differ from those reported in the original studies since overlapping samples were excluded in the current study.

Direction of effect: SNPs with the same effect direction for association to CAD and migraine are marked as plus (+), opposing effect direction is marked as minus (−).
more in-depth analyses, including analysis for potential gene-gene interactions or identification of CAD risk loci specific to migraineurs. Third, considerable effort was devoted to the careful avoidance of shared controls between studies, and stringent quality control measures within each data set were enforced to reduce the risk of spurious effects resulting from biases within the data sets. Nevertheless, we cannot rule out subtle biases that could affect the current results. Two such concerns are the effects of migraine on survival and the possibility that migraineurs may be more likely to seek medical treatment and therefore be under closer surveillance with regards to other disorders. Future efforts should aim to replicate these findings in sufficiently large prospective data sets where both phenotypes are measured in the same individuals.

Our study provides novel insights into the relationship between migraine and CAD. Intriguingly, and unexpectedly, there was no genetic overlap between MA and CAD, for which epidemiologic studies suggest comorbidity, but there was compelling evidence for a genetic overlap between MO and CAD, where the impact of risk variants overall was in opposite direction for the 2 disorders. The results do not demonstrate that shared common genetic risk factors drive comorbidity between the 2 disorders. However, dissecting the mechanisms underlying the shared risk loci may improve our understanding of both disorders.

AUTHOR AFFILIATIONS

From the Department of Neurology (B.S.W., J.-A.Z.) and FORMI (B.S.W., L.M.J., L.M.P., J.-A.Z.), Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine (B.S.W., J.-A.Z.), University of Oslo, Norway; Welcome Trust Sanger Institute (B.S.W., P.G., V. Amtia, P.P., E.H., A.P.), Wellcome Trust Genome Campus, Cambridge, United Kingdom; Department of Cardiovascular Sciences (C.P.N., N.J.S), University of Leicester, Clinical Sciences Wing and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Disease (C.P.N., N.J.S.), Glenfield Hospital, Leicester, United Kingdom; Institute for Smoke and Dementia Research (R. Malik, T.F., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany; Munich Cluster for Systems Biology and Neuroscience (M-CyN) (R. Malik, T.F., M.D.), Munich, Germany; Program in Medical and Population Genetics (P.G., V. Amtia, H.-H.W., S.K., C.C., A.P.) and Stanley Center for Psychiatric Research (V. Amtia, A.P.), Broad Institute, Cambridge, MA; Psychiatric & Neurodevelopmental Genetics Unit (P.G., A.P.), Department of Psychiatry, Analytic and Translational Genetics Unit (V. Amtia, A.P.), Department of Medicine, Center for Human Genetic Research (H.-H.W., S.K.), Cardiovascular Research Center (H.-H.W., S.K.), and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Division of Preventive Medicine (T. Kurth, D.I.C.), Brigham and Women’s Hospital and Department of Medicine (V. Amtia, H.-H.W., S.K.), Harvard Medical School, Boston, MA; Department of Genetics (J.V.H., C.C.) and Department of Neurology (C.C.), Yale University School of Medicine, New Haven, CT; Wellcome Trust Centre for Human Genetics (K.S.E.), University of Oxford, United Kingdom; Department of Public Health (J.K.), High Institute and Institute for Molecular Medicine Finland (P.P., E.H, J.K., M.W., A.P.), University of Helsinki, Finland; Department of Epidemiology (N.A., M.A.I., C.v.D.), University of Technology, Brisbane, Australia; National Heart, Lung, and Blood Institute’s Framingham Heart Study (C.J.O.), Framingham, MA; Department of Medicine, Institute for Translational Medicine and Therapeutics, and Cardiovascular Institute (D.J.R.), University of Pennsylvania, Philadelphia, PA; Department of Clinical Physiology and Nuclear Medicine (O.R.), Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine (O.R.), University of Turku, Finland; Department of Neurology (M.S.), University HospitalEssen, Essen, Germany; dCODE genetics (U.T.), Reykjavik, Iceland; Faculty of Medicine (U.T.), University of Iceland, Reykjavik, Iceland; Institute of Genetics (M.W.), Folkhälsoforskning Research Center, Helsinki, Finland; Institut National de la Santé et de la Recherche Médicale (INSERM) Research Center for Epidemiology and Biostatistics (U897) Team–Neuroepidemiology (T. Kuhnt), Bordeaux, France; University of Bordeaux (T. Kuhnt), France; and Institute of Human Genetics (C.K.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

AUTHOR CONTRIBUTIONS

Bendik S. Wintvold and Christopher P. Nelson: performed statistical analysis; conceived and designed the study; analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Rainer Malik: conceived and designed the study; analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Padhraig Gormley, Verneri Amtia, Jason Vander Heiden, Katherine S. Elliott, Line M. Jacobsen, and Priit Palta: analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Najaf
Amin, Bouke de Vries, Eija Hämäläinen, Tobias Fredling, M. Arfan Ikram, Thorsten Kessler, Markku Koiranen, Lannie Lighthart, George McMahon, Linda M. Pedersen, Christina Willenborg, and Hong-Hee Won: contributed data; drafted/revised the manuscript for content. Jes Olesen: analyzed and interpreted the data; contributed data; drafted/reviewed the manuscript for content. Ville Arto, Themistocles L. Assimes, Stefan Blankenberg, Dorret I. Boomsma, Lynn Cherkas, George Davey Smith, Stephen E. Epstein, Jeanette Erdmann, Michel D. Ferrari, Hartmut Göbel, Alastair S. Hall, Marjo-Riitta Jarvelin, Mikko Kallela, Jaakko Kaprio, Sekar KarWARDSAN, Terho Lehtimäki, Ruth McPherson, Winfried Mütze, Dale R. Nyholt, Lydia Quayle, Daniel J. Rader, Olli Raitakari, Robert Roberts, Heizibert Schunkert, Markus Schürk, Alexandre F.R. Stewart, Giuela M. Terwindt, Unnur Thorsteinsdottir, Armin M.J.M. van den Maagdenberg, Cornelia van Duin, and Maija Wessman: contributed data; drafted/revised the manuscript for content. Tobias Kurth and Christian Kubisch: analyzed and interpreted the data; contributed data; drafted/reviewed the manuscript for content. Daniel I. Chasman and Chris Cotsapas: analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Martin Dichgans: conceived and designed the study; analyzed and interpreted the data; contributed data; drafted/reviewed the manuscript for content. Daniel I. Chasman and Chris Cotsapas: analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Anja Anker Zwart, Niles J. Samani, and Arno Paloei: conceived and designed the study; jointly supervised research; analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. All authors accept responsibility for conduct of research and will give final approval.

ACKNOWLEDGMENT

P.P. was supported by the European Commission FP7 project no. 261123 (gEUVDAS). C.K. and H.G. were funded by the German Federal Ministry of Education and Research (BMBF) within the framework of the National Genome Research Network (NGFN-Plus: grants 01GS08120 and 01GS1103 [to C.K.]) and the Deutsche Forschungsgemeinschaft (DFG). The Academy of Finland (grant 139795 to M.W.); the Folkhälso Research Foundation (to M.W.); the Medicinska Understödföreningen Liv & Halsa (to M.W.); the Orton Farmos Research Foundation (to V. Anttila); and the Helsinki University Central Hospital (to M. Koiranen and V. Arto). The Women’s Genome Health Study (WGH5) is supported by HL043851 and HL080467 from the National Heart, Lung, and Blood Institute and CA047988 from the National Cancer Institute, with collaborative scientific support and funding for genotyping provided by Agen. Genetic analyses of migraine in WGH5 have been supported by NS061836 from the National Institute of Neurological Disorders and Stroke. The Nord-Trøndelag Health Study (The HUNT Study) is a collaboration between HUNT Research Centre (Faculty of Medicine, Norwegian University of Science and Technology, NTNU), Nord-Trøndelag County Council, Central Norway Health Authority, and the Norwegian Institute of Public Health. The Young Finns Study has been financially supported by the Academy of Finland: grants 134309, 126925, 121584, 124282, 129378, 117787, and 41071, the Social Insurance Institution of Finland, Kuopio, Tampere and Turku University Hospitals Medical Funds (grant 9N035 for T.L.), Juho Vainio Foundation, Paavo Nurmi Foundation, Finnish Foundation of Cardiovascular Research and Finnish Cultural Foundation, Tampere Tuberculosis Foundation, and Emil Aaltonen Foundation. The authors gratefully acknowledge the expert technical assistance in the statistical analyses by Irina Lisinen and Ville Aalto. TwinsUK: the study was funded by the Wellcome Trust and European Community’s Seventh Framework Programme (FP7/2007–2013). The study also receives support from the National Institute for Health Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. SNP Genotyping was performed by The Welcome Trust Sanger Institute and National Eye Institute via NIH/CIIDR. The authors thank their funders, twin volunteers, and TwinsUK team. The LUMINA study is supported by grants obtained from the Netherlands Organization for the Health Research and Development (ZonMW) no. 900700217 and VIDIS (ZonMW) no. 91711319 (to G.M. T.); the Netherlands Organisation for Scientific Research (NWO) VICI (918.56.602) and Spinoza (2009) grants (to M.D.F.); the 7th Framework EU project EUROLEADPAIN (no. 602635); and the Center for Medical Systems Biology (CMSB) established in the Netherlands Genomics Initiative/Netherlands Organisation for Scientific Research (NGI/NWO), project no. 050-060-409 (to M.D.F. and A.M.J.M.v.d.M.). Phenotype and genotype data collection in the Finnish Twin Cohort has been supported by the Wellcome Trust Sanger Institute, ENGAGE—European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, and AA-09203 to R.J. Rose and AA15416 and K02AA018755 to D.M. Dick), and the Academy of Finland (grants 100499, 205855, 118555, 141054, 265240, 263278, and 264164 to J.K.). Phenotype and genotype data collection in NTR/NESDA was funded by the Netherlands Organization for Scientific Research (NWO: MagW/ZonMW grants 904-61-090, 985-10-002, 904-61-193; 488-00-004, 400-05-717, Addiction-31100008 Middelgroot-919-09-032, Spinozapremie 56464/1492, Geestkracht program grant 10-000-1002), Center for Medical Systems Biology (CMSB, NWO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI—NL, 184.021.007), the VU University’s Institute for Health and Care Research (EMGO+), Neuroscience Campus Amsterdam (NCA), ENGAGE—HEALTH-F4-2007-201413); European Science Council (ERC Advanced, 230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute for Human Genetics, Sioux Falls, SD, the National Institutes of Health (NIH, R01D004257-01A), Genetic Association Information Network (GAIN) of the Foundation for the US National Institutes of Health (NIHM, MH081802), and by the Grand Opportunity grants 1RC2MH089951-01 and 1RC2MH089995-01 from the NIH. NFBIC/1966 received financial support from the Academy of Finland (project grants 104781, 120315, 129269, 1114194, 24300796, Center of Excellence in Complex Disease Genetics and SALVE), Oslo University Hospital, Finland, Biocenter, University of Oslo, Finland 75617, 24002054, University of Oulu, Finland (grants 24000692 and 24500283: Well-being and health: Research in the Northern Finland Birth Cohorts 1966 and 1986, Phenotypic and Genomic analyses). NIH/NHLBI NHLBI grant 5R01HL087679-02 through the STAMPED program (1R1LMH083268-01). NHLBI Consortium for Neuropsychiatric Phenomics Co-ordinating Center (1R01HL087679-01), and NIH/NIMH (5R01MH63706-02, United States). ENGAGE project and grant agreement HEALTH-F4-2007-201413. Medical Research Council (grant G1002319). The DNA extractions, sample quality controls, biobank upkeep, and aliquoting were performed in the National Public Health Institute, Biomedical Helsinki, Finland and supported financially by the Academy of Finland and Biocentre Helsinki. The authors thank Ms. Outi Tornwall and Ms. Minnula Jussila (DNA biobanking).

STUDY FUNDING

This work was supported by Academy of Finland (grant 251704 to A.P.), Sigrid Juselius Foundation (to A.P.), SynSys (to A.P.), the Wellcome Trust (grant 098051 to A.P.), EU FP7-242167 (to A.P.), NIH/RFH- HL-12-007, Genomic and Metabolomic Profiling of Finnish Familial Dyslipidemia Families (to A.P.), the South-Eastern Norway Regional Health Authority (grants 2010075 and 211083 to B.S.W., L.M.J., and J-A.Z.), the Research Council of Norway (grant 251187/F20 to B.S.W.), and the NIHIR Leicesters Cardiological Biomedical Research Unit and BHF (to C.P.N.). N.J.S. holds a Chair funded by the British Heart Foundation and is an NIHIR Senior Investigator. Funding for study cohorts and remaining authors are listed in the acknowledgment. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

DISCLOSURE

Bendik S. Winsvold has received research support from the Research Council of Norway, the South-Eastern Norway Regional Health Authority, and Forßberg’s and Auli Endowment. Christopher P. Nelson, Rainer Malik, and Padhraig Gormley report no disclosures. Vermeer Arntila has received travel support from Orion Farmos Research Foundation. Jason Vander Heiden has received funding for travel and/or speaker honoraria from New England Biolabs; and has received research support from National Library of Medicine and the United States-Israel Binational Science Foundation. Katherine S. Elliott reports no disclosures. Line M. Jacobsen is employed by AstraZeneca. Prit Palta has received

© 2015 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
research support from the Finnish Cultural Foundation. Najaf Amin has received research support from the Netherlands Brain Foundation. Boukje de Vries and Eija Hamalainen report no disclosures. Tobias Freilinger has received funding for travel and/or speaker honoraria from Boehringer Ingelheim and Allergan; and has received research support from Deutsche Forschungsgemeinschaft (DFG). M. Arfan Ikrar has received funding for travel and/or speaker honoraria from Kaizo, Ltd.; has served on the editorial boards of Neuroepidemiology, PLoS One, and Journal of Alzheimer Disease; and has received research support from Jansen Prevention Center, Netherlands Organization for Health Research and Development, the Netherlands Heart Foundation, Internationaal Parkinson Fonds, Internationale Stichting Alzheimer Onderzoek, and the Alzheimer Association. Thorsten Kessler and Mattku Koitonen report no disclosures. Lannie Lighthart has received research support from EFIC-Grüntenthal. George McMahon, Linda M. Pedersen, Christina Willenborg, and Hong-Hee Won report no disclosures. Jes Olesen has consulted for Janssen Pharmaceutical Products; and has served on speakers' bureaus for Allergan. Ville Arto has received funding for travel and/or speaker honoraria from Boehringer Ingelheim, Orion, Menarini, Migraine Trust, and Bayer; and has received research support from the Finnish Medical Foundation and Helsinki University Central Hospital. Themistocles L. Assimes has served on the editorial board of Frontiers in Cardiovascular Medicine; has consulted and received research support from Telomere Diagnostics, Inc.; and has received research support from NHLBI, Stefan Blanckenberg, Dorier L. Boomsma, Lynn Cherkas, and George Davey Smith report no disclosures. Stephen E. Epstein has received research support from MedStar Heart and Vascular Institute and MedStar WA Hospital Center; and holds stock/stock options and/or receives Board of Directors Compensation for CardioCell. Jeanette Erdmann reports no disclosures. Michel D. Ferrari has served on the editorial board of Cephalalgia; and has received research support from the Netherlands Organization for Scientific Research (NWO), European Community, ZonMW, and the Dutch Heart Foundation. Harro M. Göbel has served on Scientific Advisory Boards for Allergan, Bayer Vital, and St. Jude Medical; has received funding for travel and/or speaker honoraria from Amgen, Allergan, Hormosan, Klosterfrau, MSD, Mundipharma, St. Jude Medical, and Teva; has served on the editorial board of Der Schmerz, Pain Research and Treatment; has served on speakers' bureaus for Allergan, Hormosan, Klosterfrau, MSD, Mundipharma, St. Jude Medical, and Teva; and has received research support from St. Jude Medical. Alistair S. Hall and Marjo-Riitta Jarvelin report no disclosures. Mikko Kallela has served on Advisory Boards for MSD and Allergan; has received funding for travel and/or speaker honoraria from MSD, Allergan, TEVA, Novartis, and Genzyme; has received compensation for producing educational material from TEVA and Allergan; has received research support from Helsinki University Central Hospital; and holds stock/stock options and/or has received Board of Directors compensation from Helsinki Headache Center. Jarokko Kaprio has served on an Advisory Board for Copenhagen University; has received funding for travel and/or speaker honoraria; and has consulted for Pfizer Ltd. Sekar Katheresan has served on scientific advisory boards for Regeneron, Merck, Eli Lilly, Aegerion, Catabasis, Amarin, and Novartis; and has received research support from Regeneron, Aegerion, Merck, NIH, and Fondation Leducq. Terho Lehtimäki reports no disclosures. Ruth McPherson has served on the editorial board of Arteriosclerosis, Thrombosis & Vascular Biology; and has received research support from Canadian Institutes of Health Research and Heart & Stroke Foundation of Canada. Winfried März has served on Scientific Advisory Boards and speakers' bureaus and consulted for Aegerion Pharmaceuticals, AMGEN, Danone Research, Sanofi/Genzyme, Hoffmann LaRoche, MSD, Synageva, Eli Lilly, and BASF; has received funding for travel and/or speaker honoraria from Aegerion Pharmaceuticals, AMGEN, Danone Research, Sanofi/Genzyme, Hoffmann LaRoche, MSD, Synageva, Eli Lilly, and BASF; has served on the editorial boards of European Heart Journal and Journal of Laboratory Medicine; has been employed by and holds stock/stock options and/or Board of Directors compensation from Synlab Services GmbH; and has received research support from Aegerion Pharmaceuticals, AMGEN, Danone Research, Sanofi/Genzyme, Hoffmann LaRoche, MSD, Synageva, Eli Lilly, BASF, European Union, German Ministry of Research, German Ministry of Commerce, and Wissenschaftsinitiative Oberhein. Dale R. Nyholt reports no disclosures. Christopher J. O'Donnell is employed by and has received research support from National Institutes of Health. Lydia Quaye reports no disclosures. Daniel J. Rader has served on the scientific advisory boards of Arteriosclerosis, Thrombosis & Vascular Biology; and has received research support from NIH and the Leducq Foundation. Olli Raitakari and Robert Roberts report no disclosures. Hernit Schunkert has served on scientific advisory boards, consulted for, received funding for travel and/or honoraria, and/or received research support from AstraZeneca, AMGEN, MSD SHARP & DOHME, Bayer Vital, Boehringer Ingelheim, Medtronic, Novartis, Pfizer, Sanofi-Aventis, St. Jude, Boston Scientific, and Daichi Sankyo. Markus Schönke has served on the editorial boards of The Journal of Headache and Pain, and BMC Neurology; and consults Bayer HealthCare Pharmaceuticals. Alexandre F.R. Stewart has served on the editorial board of Frontiers in Cardiovascular Medicine—Cardiovascular Genetics. Gisela M. Tewindt has received research support from the Netherlands Organisation for Scientific Research (NWO). Unnur Thorsteinssdotter is an employee of deCODE genetics/Amgen. Arn M.J.M. van den Maagdenberg and Cornelia van Duijn report no disclosures. Maija Wesman has received research support from Folkhälsan Research Foundation, Academy of Finland, and Medicinska Undersökningsföreningen Liv och Halsa. Tobias Kurth has served on editorial boards for BMJ and Cephalalgia; and has received research support from the French National Research Agency and the University of Bordeaux. Christian Kühnisch reports no disclosures. Martin Dichgans has served on editorial boards for Stroke, the International Journal of Stroke, Cerebrovascular Diseases, and Journal of Neurochemistry; has consulted for Bayer Vital, Boehringer Ingelheim, Bristol-Myers Squibb, and Heel; and has received research support from Wellcome Trust, European Union, and German Federal Ministry of Education and Research. Daniel I. Chaushman has served on the editorial board for Arteriosclerosis, Thrombosis, and Vascular Biology; and receives publishing royalties for Protein Structure: Determination, Analysis, and Applications for Drug Discovery (Marel Dekker, 2003). Chris Cotsapas has served on the editorial board for PLoS Genetics; and has received research support from NINDS, NIAID, and RE Children’s Consortium. John-Anker Zwart reports no disclosures. Nilesh J. Samani has served on editorial boards for Circulation: Cardiovascular Genetics and Heart; and has received research support from British Heart Foundation and National Institute for Health Research. Aarno Palotie has been a member of the Pfizer Genetics Scientific Advisory Panel; has received travel expenses and/or honoraria for lectures or educational activities not funded by industry; and has received research support from the Finnish Academy, European Union NIH, NINDS, Jewish Foundation, and the Finnish Foundation for Cardiovascular Research. Go to Neurology.org for full disclosure forms.

Received April 4, 2015. Accepted in final form May 27, 2015.

REFERENCES

Genetic analysis for a shared biological basis between migraine and coronary artery disease
Bendik S. Winsvold, Christopher P. Nelson, Rainer Malik, et al.

Neurol Genet 2015;1:
DOI 10.1212/NXG.0000000000000010

This information is current as of July 2, 2015