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Over the past decade, science has greatly advanced our understanding of interdependent feedback mechanisms

involving the heart, lung, and kidney. Organ injury is the consequence of maladaptive neurohormonal activation,

oxidative stress, abnormal immune cell signaling, and a host of other mechanisms that precipitate adverse

functional and structural changes. The presentation of interorgan crosstalk may include an acute, chronic, or acute

on chronic timeframe. We review the current, state-of-the-art understanding of cardio-pulmonary-renal interac-

tions and their related pathophysiology, perpetuating nature, and cycles of increased susceptibility and reciprocal

progression. To this end, we present a multidisciplinary approach to frame the diverse spectrum of published

observations on the topic. Assessment of organ functional reserve and use of biomarkers are valuable clinical

strategies to screen and detect disease, assist in diagnosis, assess prognosis, and predict recovery or progression

to chronic disease. (J Am Coll Cardiol 2015;65:2433–48) © 2015 by the American College of Cardiology

Foundation.
T he concept of organ crosstalk refers to the
complex biological communication and
feedback between different organs, medi-

ated via mechanical, soluble, and cellular mecha-
nisms. Although crosstalk is essential to maintain
body homeostasis, pathological states in 1 or more
organs can lead to functional and structural
dysfunction in other organs. The classification of
cardiorenal syndromes has been expanded into 5
subtypes. Types 1 and 2 involve acute and chronic
cardiovascular disease scenarios leading to acute
kidney injury (AKI) or accelerated chronic kidney
disease (CKD). Types 3 and 4 describe AKI and
CKD, respectively, leading primarily to heart fai-
lure (HF), although it is possible that acute coro-
nary syndromes, stroke, and arrhythmias could be
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cardiovascular disease outcomes in these forms of
CRS. Finally, CRS type 5 describes a systemic insult
to both the heart and the kidneys, such as sepsis,
where both organs are injured simultaneously in
persons with previously normal heart and kidney
function at baseline. Pulmonary-renal syndromes
represent heterogeneous clinical entities, described
by a combination of diffuse alveolar hemorrhage
on the basis of pulmonary capillaritis in conjunction
with glomerulonephritis as well as acute respiratory
distress syndrome (ARDS) associated with AKI in the
absence of hematuria. Hepatorenal syndrome can
involve the development of functional cardiopulmo-
nary changes and AKI in patients with advanced
liver failure (acute or chronic) and is beyond the
scope of this review.
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ABBR EV I A T I ON S

AND ACRONYMS

AKI = acute kidney injury

ARDS = acute respiratory

distress syndrome

BNP = B-type natriuretic

peptide

CKD = chronic kidney disease

CPRI = cardio-pulmonary-renal

interactions

FGF = fibroblast growth factor

GFR = glomerular filtration

rate

HF = heart failure

LV = left ventricular

PH = pulmonary hypertension
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CARDIO-PULMONARY-RENAL

INTERACTIONS: NEED FOR

DEFINITION OF A SYNDROME?

With growing knowledge of interdependent
feedback mechanisms involved in the heart,
lung, and kidney crosstalk, the descriptive
classification of a syndrome can represent a
framework for exploring epidemiology,
pathophysiology, detection, and manage-
ment. Because of the complicated courses of
hospitalization and the high mortality of
patients with involvement of all 3 organs,
an integrative approach is needed. The
sequence of organ involvement can vary
depending on the acuity and nature of the
underlying disorder. Many patients with
disorders of 1 organ (e.g., CKD) die of complications of
the other (e.g., HF) before the first organ’s failure
reaches its fullest extent, or the dysfunction of every
organ may develop slowly until a “collapse” is
reached and full-blown decompensation occurs. That
is, each dysfunctional organ has the ability to initiate
and perpetuate mutual injury through hemodynamic,
neurohormonal, and cell signaling feedback mecha-
nisms, while multiple episodes of acute (on chronic)
decompensation may lead to reciprocal end-organ
disease progression (Central Illustration). Given the
multitude of contributing factors and the time
sequence of events in cardio-pulmonary-renal in-
teractions (CPRI), it is challenging to identify the
underlying pathophysiological mechanisms and
develop a strategy for diagnostic and therapeutic
intervention. This review summarizes recent ad-
vances in our understanding of CPRI.

LUNG IN ORGAN CROSSTALK:

THE PULMONOLOGIST’S VIEW

Open to environmental influence, the lung is a highly
immunologic organ, representing a gateway to the
environment. The lung has critical pathophysiolog-
ical connections to the failing heart and kidney
(Figure 1A).

LUNG INJURY, ABNORMAL CELL SIGNALING, AND

OXIDATIVE STRESS. The lung conducts gas exchange
via 3 mechanisms: ventilation, diffusion, and perfu-
sion. Any imbalance can cause respiratory distur-
bance, which can be compensated to a certain degree
by hyperventilation, greater oxygen extraction from
blood by the tissues, and increased cardiac output,
depending on the organ’s functional reserve. In both
noncardiogenic and cardiogenic pulmonary edema,
fluid accumulation in the fissure and alveolar spaces
can be seen as a result of increased pulmonary
capillary permeability, elevated intravascular hydro-
static pressure, low colloid osmotic pressure, and
insufficient lymphatic drainage (1). Changes to the
alveolar-capillary barrier can induce an inflammatory
cascade and oxidative stress of the pulmonary
microcirculation, which results in cycles of alveolar
wall injury predisposing and/or aggravating lung
injury (Figure 1B) (2). Invasive and noninvasive mea-
surements include analysis of pulmonary edema
fluid, exhaled breath condensate (pH, arachidonic
acid derivatives), proinflammatory cytokines (inter-
leukin [IL]-1b, -2, -6, -8, -12, and -17; interferon
gamma; and tumor necrosis factor [TNF]-a), anti-
inflammatory cytokines (IL-4, -5, -10, and -13 and
TGF-b), and chemokines (IL-8, monocyte chemo-
attractant protein-1, and macrophage inflammatory
protein-1b), reactive oxygen and nitrogen species,
and exhaled nitric oxide (3,4). The concept of sub-
clinical lung injury (e.g., due to previous smoking)
takes into account that even asymptomatic events
can lead to increased future susceptibility to respi-
ratory failure events, and new diagnostic techniques
may provide early detection (5,6).

Circulating factors have been implicated in the
pathogenesis of pulmonary inflammation following
renal and hepatic ischemia/reperfusion injury in an-
imal models and humans (7-9). In ischemic AKI,
experimental studies demonstrate increased pulmo-
nary vascular permeability, cellular apoptosis, alve-
olar hemorrhage, and leukocyte trafficking due to the
production and/or decreased clearance of mediators
of lung injury (2). Intraluminal neutrophils contribute
through phagocytosis and release of mediators,
including reactive oxygen species and proteases, and
activation of dendritic cells, augmenting the immune
response. Pro-inflammatory cytokines produced by
renal tubular cells as well as white blood cells include
TNF-a and IL-1b and -6. Conversely, there are coun-
terbalancing cell signaling peptides, including the
anti-inflammatory IL-10, which has been shown to
reduce lung injury in experimental models (2).
Delayed recovery of kidney function may impair res-
olution of lung inflammation post-AKI (10). The
altered mechanisms for water transport in pulmonary
edema are described in detail in the “Uremic Lung”
section.
MECHANICAL VENTILATION AND ARDS. Mechanical
ventilation increases intrathoracic pressure and pro-
duces adverse hemodynamic effects that are oppo-
site to normal spontaneous ventilation. Mechanical
ventilation compresses pulmonary vasculature, which
may result in increased right ventricular afterload and
diminished cardiac output, leading to hypotension
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Multiple dependent inflammatory pathways promote injury and elevate the risk for chronic disease of the heart, lung, and kidney, including increased

expression of soluble pro-inflammatory mediators, innate and adaptive immunity, physiological derangements, and cellular apoptosis. The figure illustrates

the cellular and molecular crosstalk and potential biomarkers in acute and chronic cardio-pulmonary-renal interactions. BNP ¼ B-type natriuretic peptide;

ENaC ¼ epithelial sodium channel; FGF ¼ fibroblast growth factor; GST ¼ glutathione S-transferase; hs-cTnT ¼ high-sensitivity cardiac troponin T; ICAM ¼
intercellular adhesion molecule; IGFBP ¼ insulin-like growth factor binding protein; IL ¼ interleukin; KIM ¼ kidney injury molecule; L-FABP ¼ L-type fatty

acid binding protein; NAG ¼ N-acetyl-b-D-glucosaminidase; NGAL ¼ neutrophil gelatinase-associated lipocalin; NKCC1 ¼ sodium-potassium chloride

cotransporter 1; TIMP ¼ tissue inhibitor of metalloproteinase; TGF ¼ transforming growth factor; TNF ¼ tumor necrosis factor.
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and fluid-responsive shock; this scenario is commonly
seen in the initial post-intubated period when venti-
lation is initiated. Similarly, decreased venous return
and/or diminished diaphragmatic and abdominal wall
compliance can compromise renal blood flow (11).
Importantly, increased intra-abdominal pressure may
contribute to reduced ventilatory volumes, impaired
throughput of blood through the kidneys, and
impaired venous return to the right heart, resulting
in CPRI.

The severest form of lung injury is ARDS. Its defi-
nition includes the onset of lung failure within 1 week
of the onset of illness, and it is characterized by
hypoxemia in the presence of bilateral infiltrates on
the chest x-ray that cannot be explained by HF or
fluid overload. Whereas resolution of cardiogenic



FIGURE 1 The Lung in Cardio-Pulmonary-Renal Interactions
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pulmonary edema can be rapid, the rate of edema
resolution in most patients with ARDS is markedly
impaired (1). The role of the alveolar-capillary barrier
is very important in ARDS and governs both the
rapidity of onset and the delayed clearance of alve-
olar fluid. ARDS is a major cause of mortality associ-
ated with appreciable morbidity, and AKI as an
additional risk factor often develops as a component
of a multiorgan system dysfunction. Even though
ARDS mortality is currently declining (25% to 40%),
AKI combined with ARDS increases mortality to 50%
to 80% and negatively affects clinical outcomes, ris-
ing with AKI severity (12). ARDS is a breakdown of
normal lung architecture, loss of functioning lung
units, and development of a high-permeability pul-
monary edema, all of which result in clinically-stiff,
noncompliant, and heterogeneous lungs. Often
requiring mechanical ventilation, it can itself in-
duce and/or exacerbate lung injury contributing to
distant organ effects and deleterious outcomes
(2). Mechanistically speaking, pathophysiological
changes occur from the direct effect of high pressure
on the lung: barotrauma, from the damage caused by
lung overdistension; volutrauma, from the shear
stress of repetitive opening and closing of alveoli; and
atelectotrauma, from the generation of cytokines
and an inflammatory cascade, resulting in bio-
trauma. Here, lung-protective ventilation strategies
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not only improve mortality from ARDS, but also
lead to improved distant organ function, suggesting
the presence of iatrogenic trauma as a result of
high volume ventilation that can further trigger
hemodynamic, neurohormonal, and cell signaling
pathophysiological mechanisms (including right ven-
tricular stress with progressive pulmonary hyper-
tension [PH]) (10,13). In addition, fluid overload and
venous congestion is an independent predictor of
increased mortality in AKI that is thought to further
contribute to respiratory complications (14). Here, the
goal of optimal fluid management for recovery of both
organs is an area of active study (10). Furthermore,
the role of inhaled nitric oxide for alleviation of
ARDS and altering renal function has to be defined,
including its anti-inflammatory properties (15). Sev-
eral favorable effects are known, although trials
and meta-analyses have failed to demonstrate its
beneficial use in ARDS (16). Inhaled nitric oxide cau-
ses selective vasodilation of pulmonary vessels in
ventilated areas without affecting systemic blood
pressure and cardiac output, improves ventilation-
perfusion mismatch, and is a valuable option to
reduce PH in susceptible patients (17). In addition,
nitric oxide exerts positive effects in acute hyperoxic
lung injury models by diminishing inflammation and
by protecting both endothelium and alveolar epithe-
lium from oxidative injury (18).

Outside of the setting of ARDS, there is convincing
evidence that pro-inflammatory effects of mechanical
ventilation can be a source of AKI. In lung-injurious
ventilator strategies, animal models demonstrate
the production of a variety of inflammatory cytokines
(e.g., IL-8 and monocyte chemotactic protein-1),
expression of nitric oxide synthase (shown to exert
cytotoxic effects), induction of renal epithelial cell
apoptosis, and dysregulation of renal vascular
response (19). Injurious mechanical ventilation in-
duces myocardial inflammation, including the
up-regulation of pro-inflammatory myocardial cy-
clooxygenases and expression of IL-8, whereas
lung-protective strategies ameliorate myocardial
inflammation (20).
PULMONARY VASCULAR REMODELING AND FIBROSIS.

Patients with chronic respiratory disease often have
multiple comorbidities such as concomitant cardio-
vascular disease, hypertension, and a decline in
renal function (21). The diseases’ natural course
and severity, as well as quality of life, are diverse,
depending on pathology in the respiratory system
and on other organ dysfunction. Comorbidities are
frequently the reason for hospitalization and have
led to a common view that chronic respiratory disor-
ders contribute to both airway and systemic
inflammation affecting distant organs (22). Poly-
pharmacy is frequent in these cohorts, and impaired
renal clearance of drugs could increase the risk of
adverse reactions. Pulmonary congestion in chronic
HF can initiate lung structural remodeling by prolif-
eration of fibroblasts with fibrosis and extracellular
matrix deposition, resulting in thickening of the
alveolar wall (Figure 1B) (23). Similar mechanisms are
assumed in CKD, in addition to uremia-related
dysfunction of the pulmonary microcirculation (24).
Although the resultant reduction in vascular perme-
ability is initially protective against pulmonary
edema and can be seen as a restorative mechanism,
the process can cause a restrictive, poorly compliant
lung with impaired gas exchange, and reduced exer-
cise capacity. The lung diffusion capacity for carbon
monoxide is one of the most clinically-valuable tests
to assess the alveolar-capillary membrane. In acute
decompensated HF, it can be normal or elevated due
to an increased alveolar capillary blood volume,
whereas the previously-mentioned mechanisms can
lead to its impairment in chronic HF (25). In CKD, a
marked decrease in diffusion capacity for carbon
monoxide correlates with the severity of renal
impairment after correcting the effects of renal ane-
mia (26). The multifunctional protein Klotho regu-
lates phosphate/calcium metabolism and is identified
as an important molecule in the aging processes. Its
cytoprotective role is currently investigated in CKD
and cardiac remodeling, and Klotho appears as 1 of
several unifying mechanisms in the CPRI. Animal
studies emphasize its antioxidative (27) and anti-
fibrotic (28) capacity by suppressing vascular endo-
thelial growth factor and the pro-fibrotic TGF-b1/
Smad 3 expression in pulmonary epithelia.

Chronic hypoxia and vascular remodeling is
assumed to be responsible for resultant secondary and
in some cases fixed pre-capillary PH, which is an in-
dependent predictor of mortality (29). The transition
from a primary vasoconstrictive to a vasoproliferative
process is the hallmark of fixed PH. This histopatho-
logical pattern is defined by “hypertrophy of the
medial layer of the vessel wall, hyperplasia of the
intimal layer, proliferation of the adventitial layer,
and/or plexiform lesions” (29). The natural course of
PH is generally progressive, with osteoblastic trans-
formation of vascular smooth muscle cells and depo-
sition of hydroxyapatite crystals in the interstitium.
As a result, pulmonary vascular stiffness markedly
increases. In this scenario, a selective pulmonary
vasoactive therapy can potentially worsen a patient’s
condition by causing increased venous engorgement
and a shift of the interventricular septum, thus
inducing left ventricular (LV) failure with pulmonary
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edema (30). PH has been reported in >60% of patients
with HF with reduced ejection fraction, >80% of pa-
tients with HF with preserved ejection fraction, and in
78% of patients prior to mitral valve surgery (31).

First established in 1998, the clinical classification
of PH has become more granular over time, and in
2013, chronic renal failure was added as a risk factor
(29). The prevalence of PH and concomitant CKD
increases with declining renal function, and in current
understanding, kidney function may itself have an
effect on pulmonary vascular remodeling in a predis-
posed patient, analogous to connective tissue disease,
human immunodeficiency virus, or portal hyper-
tension (32). Pathophysiological features include
endothelial dysfunction, decreased bioavailability of
nitric oxide, increased levels of endothelin-1, fluid
overload, and shunting via arteriovenous fistulae (32).

BLOOD GAS DISTURBANCES. Maintenance of normal
gas exchange is not achieved in patients with chronic
underlying pulmonary disease and in severely ill pa-
tients; hypoxemia and/or hypercapnia develops with
relative degrees of renal acid/base compensation.
Reflecting alveolar ventilation in most cases, acute
and chronic changes in carbon dioxide tension elicit
renal adaptive buffering mechanisms. In pulmonary
diseases, vasodilator properties of hypercapnia lead
to a decrease in systemic vascular resistance and
blood pressure with consequent neurohormonal
activation, retention of salt and water, and reduction
in renal blood flow and glomerular filtration rate
(GFR); cardiac output is not reduced, and renal blood
flow and GFR increase when hypercapnia improves
(21,33). Supported by recent findings, the relative
contribution of blood gas disturbances may be crucial
in CPRI and its prognosis. The targeted long-term use
of noninvasive ventilation (biphasic positive airway
pressure) for reduction of hypercapnia in stable
chronic obstructive pulmonary disease patients
significantly improves survival (34). Likewise, forms
of assistance in ventilation for obstructive and central
sleep apnea effect improvements in renal blood flow
and glomerular filtration (35). Short-term noninvasive
ventilation reduces albuminuria, high-sensitivity C-
reactive protein levels, and urinary norepinephrine
excretion in HF patients (36). On the contrary,
permissive hypercapnia in acute respiratory disorders
may be beneficial in diminishing lung inflammation
and lung/kidney cell apoptosis (37).

HEART IN ORGAN CROSSTALK:

THE CARDIOLOGIST’S VIEW

Cardiovascular diseases remain the major cause for
hospitalization, disability, and mortality worldwide.
Among those, HF is a pivotal and progressive condi-
tion that leads to a cascade sequence of interorgan
crosstalk, including lung and kidney (Figure 2A). HF
comprises different scenarios, depending on acuity
and origin (38). Most frequently, acute decom-
pensated HF develops in the presence of an under-
lying chronic HF, although in 15% to 30% of all causes
it may present as new onset HF.

Distant organ damage is often proportional to
duration of HF and represents a daily multidisci-
plinary challenge. Recently, a TNM–like method was
proposed for HF staging, which includes the charac-
terization “H” for heart, “L” for lung, and “M” for
malfunction of other organs including the kidney
(39). Most distant organ malfunctions (e.g., liver,
kidney, or bowel) are the result of right-sided HF and
acute on chronic venous congestion (40). Addition-
ally, AKI occurs in 25% to 33% of acute decom-
pensated HF, which is an independent risk factor for
prolonged hospitalization, need for renal replace-
ment therapies, readmission, increased stroke risk,
and mortality (41). In 60% of cases of acutely
decompensated HF, AKI can be seen as an exacerba-
tion of previously-diagnosed CKD, whereas in chronic
HF, CKD has been reported as a comorbidity in 26% to
63% (42).
CARDIAC INJURY, ABNORMAL CELL SIGNALING,

AND OXIDATIVE STRESS. Analogous to the lung,
cardiomyocytes show the ability to promote distant
organ damage (e.g., AKI), following ischemic and
mechanical injury via innate immune system res-
ponse, neurohormonal signaling, and possibly, by
release of metabolic products (e.g., catalytic iron)
(41). IL-1 and TNF-a induce expression of ICAM-1, an
intercellular adhesion molecule promoting diape-
desis of leukocytes into interstitium, thereby
depressing LV function by presumably inducing car-
diomyocyte hypoxia and apoptosis (Figure 2B) (43). In
response to biomechanical strain, ST2 acts as a decoy
for IL-33 on its receptors in resident satellite cells and
cardiomyocytes. Additionally, in response to stimu-
lation by aldosterone and other factors, macrophages
secrete galectin-3, which is a powerful stimulus for
fibroblasts to proliferate and produce increased
interstitial collagen. In concomitant AKI, renal
tubular cells can further contribute to the circulating
levels of inflammatory cytokines. The important role
of these cells in the handling of inflammatory medi-
ators and resulting efflux into systemic circulation is
discussed in the section “Acute Kidney Injury,
Abnormal Cell Signaling, and Oxidative Stress” (44).
Oxidative stress has been implicated as the final
common pathway of injury in various pathological
systems that are prevalent in cardiac, pulmonary, and



FIGURE 2 The Heart in Cardio-Pulmonary-Renal Interactions
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renal disorders (1,44). Accumulation of oxidative-
damage products and failure to adapt to reactive ox-
ygen species stress may result in an immune system
activation and a proinflammatory and/or profibrotic
milieu to generate functional and structural abnor-
malities, and consequently evoke cell death.
RIGHT VENTRICULAR STRESS ANDVENOUS CONGESTION.

Pulmonary vascular resistance is in constant inter-
play with right ventricular function. In the normal
state, the right ventricle is a thin-walled, compliant,
low-pressure chamber that pumps the same stroke
volume as the left ventricle, but with z25% of the
stroke work due to the typically low resistance of the
pulmonary vasculature (45). In PH, the stressed heart
tries to balance pre-load and afterload to accommo-
date increased pulmonary vascular resistance.
Resultant neurohormonal activation (endothelin,
arginine vasopressin) leads to water and salt reten-
tion, worsening venous congestion, and further
reduced cardiac output (46).

In HF, renal failure has traditionally been thought
to be caused by renal hypoperfusion due to low-
output failure. However, most hospitalizations for
acute decompensated HF occur because of symptoms
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of pulmonary and systemic venous congestion rather
than poor perfusion (47). As 85% of the total blood
volume is located in the venous side of circulation, an
expansion in total blood volume may occur without
changes in the arterial circulation (46). However, a
dysfunctional left ventricle is prone to afterload var-
iations, and therefore, increased systemic blood
pressure can cause pulmonary congestion, irre-
spective of the intravascular volume. As reviewed
earlier, the pulmonary sequelae extend beyond sim-
ply lung edema and congestive pneumonia. Hydro-
static effects can induce lung injury and barrier
dysfunction, initiating a cascade of local and systemic
organ injury, whereby pulmonary vascular remodel-
ing results from chronic affection. Recurrent decom-
pensation can account for the vulnerability of HF
patients. Additionally, venous congestion may in-
crease gut endotoxin absorption contributing to the
harmful environment, although activation of venous
endothelium itself is a stimulus for release of in-
flammatory mediators (48). As with the heart, the
surrogate central venous pressure is 1 of the most
important hemodynamic determinants for worsening
renal function and is independently associated with
higher mortality (47). On the basis of animal models,
venous congestion is likely to decrease renal perfu-
sion pressure through an increase in back pressure
and formation of renal edema, although the renal
“intracapsular tamponade” may aggravate back
pressure (49). Venous congestion represents a part of
a cascade with stepwise development of fluid over-
load, deteriorating LV dysfunction, pulmonary
congestion, secondary fixed pre-capillary PH, right
ventricular overload and enlargement with tricuspid
incompetence, and interference with LV filling. The
additional resultant central venous pressure rise is
transmitted to the kidney and leads to a positive
feedback loop evolving toward refractory congestive
HF. Those patients are at high risk and have a narrow
window for fluid management of venous congestion;
extremes in either parameter can be associated with
worsened renal and right ventricular function.
CARDIAC REMODELING AND FIBROSIS. HF repre-
sents a heterogeneous group of syndromes leading
to structural (hypertrophy, fibrosis, and/or ventricu-
lar dilation) and functional alterations (myocardial
stiffness and incomplete relaxation of contractile
units) (50). Here, sequence of abnormal gene ex-
pression, cell signaling, and oxidative stress due to
uncontrolled hypertension, diabetes mellitus, and
other factors are a common link that is responsible
for exuberant repair (fibrosis) pathways (Figure 2B)
(41). The transformation predisposes the heart to
become more vulnerable to re-entrant arrhythmias
and pump failure. Accumulation of cardiac fibrosis
may be the mechanism by which age contributes as
a determinant of HF in the community (51).

At a cellular level, angiotensin and aldosterone
are major stimuli for galectin-3 secretion with acti-
vation of oxidant stress signaling pathways that
decrease levels of bioavailable nitric oxide, increase
inflammation and TGF-b, and promote fibroblast
proliferation, migration, extracellular matrix remod-
eling, and deposition of pro-collagen (52,53). Fibrosis
in the myocardium, lung, and kidney strongly sug-
gests that neurohormonal translation to cell signals
is part of the pathogenesis and progression of
disease. The mammalian fibroblast growth factor
(FGF) family plays a crucial role via distinct action
mechanisms among cardiomyokines and represents
a promising novel endeavor. FGF2 and FGF23 pro-
mote cardiac hypertrophy and fibrosis by activating
mitogen-activated protein kinases signaling and
circulating (a)-Klotho-independent calcineurin/nu-
clear factor of activated T cells signaling, respec-
tively. FGF2 significantly induces TGF-b1 that acts
downstream of angiotensin II and promotes cardiac
remodeling (54). The bone-derived hormone FGF23
regulates phosphate in association with parathyroid
hormone and vitamin D in coordination with its
coreceptor Klotho, whereas CKD progression results
in elevated serum levels of FGF23 (55). In con-
trast, FGF16 and FGF21 seem to prevent cardiac
remodeling (54). In vitro, Klotho inhibits TGF-b1–,
angiotensin II–, or high phosphate-induced fibrosis
(56) and confers resistance to oxidative stress and
endothelial dysfunction (57). In experimental mo-
dels, intravenous delivery of a-Klotho can ameliorate
cardiac hypertrophy, independent of FGF23 and
phosphate levels (55). However, the mechanism of
a-Klotho–independent FGF23 signaling in the heart
remains unclear (54). Whether modulation of this
complex system would improve cardiac outcome
in such a high-risk population awaits further
investigation.

LV remodeling is associated with increased inter-
stitial matrix, decreased capillary density, accelerated
apoptosis, chamber dilation, and dyssynchrony,
leading to pump failure and sudden death (58).
HF with preserved systolic function remains an
elusive condition associated with concentric LV hy-
pertrophy and impairment of diastolic LV function.
It accounts for more than one-half of hospitaliza-
tions for HF and has no agreed-upon definitions for
detection or management (59). Activation of the renin-
angiotensin-aldosterone system is 1 potential unifying
element in diastolic HF and CPRI, and the poten-
tial efficacy and antifibrotic role of mineralocorticoid
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receptor antagonists in cardiac, pulmonary, and
renal disease merits further investigation in clinical
trials (52).

KIDNEY IN ORGAN CROSSTALK:

THE NEPHROLOGIST’S VIEW

The kidney is the window to neurohumoral and
immunological diseases and plays a key role in
clearance, fluid, electrolyte, and acid-base homeo-
stasis in mammalian physiology. AKI remains 1 of the
most complex clinical challenges and is associated
with excess morbidity and mortality, especially in
critically ill patients (44). Regardless of the cause,
cardiac and/or pulmonary symptoms are the leading
clinical manifestation (Figure 3A). Current definitions
of AKI are commonly linked to creatinine rise and
urinary output, are insensitive to the severity of renal
injury, and can lead to delayed diagnosis and under-
estimation of the degree of tubular damage. The
concept of subclinical AKI emphasizes that even pa-
tients who do not fulfill current consensus criteria for
AKI are still likely to have acute tubular damage that
may expose them to an increased susceptibility to
future injury and elevated risk for subsequent CKD
development (60), providing a significant impulse for
the initiation of organ crosstalk with the heart and
lung. The recent KDIGO clinical practice guideline
proposed a new conceptual model, called acute kid-
ney disease, to emphasize the need to follow patients
who survived AKI episodes. Here, assessment of renal
functional reserve seems to be a promising tool to
predict kidney recovery versus early function decline
(61). Despite medical advances and the widespread
availability of renal replacement therapy, the mor-
tality rate of severe AKI has not declined in recent
decades, reaching 50%, and therapy is limited (62).
Early and increased renal replacement therapy does
not appear to improve outcome. Much of the mor-
tality risk is thought to be the consequence of com-
plex interactions between the actual insult, activation
of inflammation, and distant organ effects. To reduce
the systemic inflammatory response, especially in
combination with AKI, recent efforts are being made
to use renal replacement therapy as a means to
reduce cytokines.

AKI, ABNORMAL CELL SIGNALING, AND OXIDATIVE

STRESS. The renal tubular epithelium is funda-
mental in the regulation of inflammatory processes
and is immunologically active (44,62). During AKI, it
represents a major site of cell injury and death,
catalyzing circulating mediators in local and sys-
temic inflammation/oxidative stress by different
mechanisms including epigenetic processes
(Figure 3B). In animal models, the kidney responds
with an expression of IL-1b, vascular cell adhesion
molecule-1, and TGF-b consistent with renal cell in-
filtrates and, in advanced stages, perivascular, peri-
glomerular, and peritubular fibrosis with increased
markers of collagen formation (63). Here, innate and
adaptive, cellular, and humoral immune systems
contribute to AKI, which are presumably involved in
repair process as well (62). However, a detailed dis-
cussion of immunomodulation is beyond the scope
of this review. Recently, many efforts have been
made to dissect the mechanisms of ischemic pre-
conditioning as a powerful intervention to protect
the heart, lung, and kidney from injury (64,65).
Endothelial cells, cardiomyocytes, and vascular
smooth muscle cells have all been shown to alter
cellular processes as a result of repeated episodes of
nonlethal hypoxia. Thus, these changes may some-
day be mimicked by drugs or other interventions to
improve cell survival during ischemic episodes. AKI
can clearly lead to CKD. The incidence of tubu-
lointerstitial fibrosis has the best correlation with
CKD development (66). Interestingly, Klotho is
mainly expressed in renal distal convoluted tubules
(56). Thus, renal tubular cells and renal fibroblasts
may be the primary cell types in the progressive
development of CKD contributing to the progressive
nature of cardiovascular and pulmonary diseases.

UREMIC LUNG. Chronic uremia affects the lungs and
results in the characteristic central butterfly appear-
ance that contrasts with the translucent periphery in
anteroposterior x-rays of the lung. In 1951, Bass et al.
(67) reported its association with cardiac hypertrophy
and LV failure in advanced kidney failure. Uremia
results in a decrease in diffusion capacity for carbon
monoxide (26), small airway dysfunction (68), and
impaired peak oxygen consumption (69). The uremic
milieu presumably contributes to the development of
lung injury and dysfunction, which can be reversed
by renal transplantation (9,70). With the introduction
of dialysis, the classic presentation of uremic lung in
the absence of volume overload has become less
common. Still, its pathophysiologic principles are
operative in CPRI.

At a cellular level, mechanisms for impaired reso-
lution of pulmonary edema in acute lung injury (1),
in cardiogenic pulmonary edema (71), and in re-
sponse to AKI (9) have been identified demonstrating
reduced expression of epithelial sodium channel,
sodium-potassium ATPase, and aquaporin 5. Epithe-
lial sodium channel-inhibition (e.g., with amiloride)
can alter alveolar fluid clearance, promoting reversed
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transepithelial ion transport with active augmenta-
tion of pulmonary edema. In animal model, inhibition
of either the apical cystic fibrosis transmembrane
conductance regulator or sodium-potassium-chloride
cotransporter 1 (e.g., with furosemide) can prevent
active alveolar fluid secretion (71).
UREMIC CARDIOMYOPATHY. CKD accelerates coro-
nary artery atherosclerosis by several mechanisms,
notably hypertension, dyslipidemia, and abnormal
calcium/phosphorus metabolism, associated with vas-
cular remodeling and development of noncompliant
vessels. Still, these mechanisms cannot account
for cardiovascular risk, as reflected in high rates of
sudden cardiac death, HF, sustained arrhythmias, and
myocardial infarction (72). Uremic cardiomyopathy
defines the structural and electrophysiological remod-
eling of the heart, characterized by biventricular
hypertrophy, systolic and diastolic dysfunction, capil-
lary rarefication, cardiac fibrosis, and an enhanced
susceptibility to further injury (73). Involvement of
the fibrotic pericardium is classically manifested
as acute on chronic uremic pericarditis with sterile
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effusion, and is a less common complication since the
introduction of dialysis. Contrarily, reversal of renal
dysfunction (e.g., after renal transplantation) can
improve cardiac function (74). Uremic cardiomyopathy
may represent the advanced alteration of cardiac
remodeling described earlier and FGF23 excess/Klotho
deficiency might make a considerable contribution in
CKD patients (56).

In type 3 cardiorenal syndrome, AKI can lead to
cardiac dysfunction by fluid overload, electrolyte and
acid-base shift, and renin-angiotensin-aldosterone
system or central nervous system activation. Analo-
gous to the lung, AKI induces endothelial cell
activation, leukocyte trafficking, and myocardial in-
filtration (the role of ICAM-1 was reviewed earlier),
and pro-apoptotic cascades, resulting in myocardial
damage and long-term dysfunction (44). Following
cardiac ischemia, ventricular fibrillation appears
much more frequent in the setting of AKI (75).
Impaired cardiac function alters the interdependency
of the cardiopulmonary circuit. Pulmonary conges-
tion, in combination with AKI-induced compromise
of tubular epithelial ion pumps, may act syner-
gistically to further compromise cardiopulmonary
function.

CKD AND FIBROSIS. The high prevalence and burden
of CKD is well established and can represent the
origin and/or continuum of chronic cardiopulmo-
nary disorders. The concept of subclinical AKI was
discussed, and early pathological changes can occur
without apparent clinical presentation due to the
high renal adaptability, but they still depict a slowly
progressing degenerative process that is both local
and systemic. Once the adaptive threshold is reached,
the progression to CKD is fast. It is generally accepted
that all primary causes of CKD share a common
pathogenic pathway of progressive renal injury due
to the destructive consequences of fibrosis. As fi-
brosis increases, the nephron that normally has a
potent regenerative capacity loses this ability, leading
to apoptosis. Proteinuria is a surrogate marker of
CKD progression and reflects endothelial dysfunc-
tion. Even a modest increase in albuminuria is asso-
ciated with chronic pulmonary disorders (76), right
ventricular/LV remodeling, and adverse cardiovas-
cular outcomes (77), although by the time proteinuria
manifests, renal structural damage has already
occurred. Here, clinical and emerging biomarkers
(e.g., galectin-3) have been identified (78). Still, it is
important to underscore that most CKD patients will
never reach the point of needing renal replacement
therapy. They are more likely to die prematurely due
to accelerated cardiovascular diseases.
ORGAN FUNCTIONAL RESERVE

Given the multitude of contributing factors and
the time sequence of events in CPRI, it is chal-
lenging to predict early functional and/or structural
changes. The normal heart, lung, and kidney permit
a degree of physiological reserve that can maintain
normal organ function for any given insult. The
functional reserve of an organ can be defined as the
difference between the minimum baseline function
and the maximum attainable function in response
to a physiological or pathological stimulus. Yet, the
mutual dependence of the organs is not defined.
In daily routine, assessment of cardiac and pulmo-
nary functional reserve is a valuable parameter to
define status, recovery, and prognosis toward the
organ’s response to an acute event or chronic
disease. Care and attention is needed in chronic
disorders, because these patients are more prone
to develop injury, decreasing the remaining func-
tional mass. Thus, patients with “acute on chronic”
organ injury are at the highest risk. Genetic dispo-
sition and environment influence the individual
course, while the organ functional reserve declines
with age as a consequence of physiological aging.
Frequent physical activity can develop and maintain
cardiopulmonary reserve best reflected by peak ox-
ygen consumption, but no factors have been iden-
tified that can lead to increased renal functional
reserve.

CARDIAC FUNCTIONAL RESERVE. Cardiac func-
tional reserve is the ability of the myocardium to
augment its cardiac output and tissue delivery of
oxygen during stress. The spectrum of myocardial
dysfunction may range from diastolic dysfunction in
the early stage to overt systolic dysfunction. Both
limit exercise tolerance before resulting in symptoms
at rest, normally manifested by exertional dyspnea
and impaired oxygen kinetic during exercise. LV
diastolic reserve is the ability of the LV filling pres-
sures to remain normal during stress, whereas in
systolic dysfunction, stress can reveal both LV and
right ventricular impaired contractile reserve (e.g., to
unmask subclinical ischemia or PH) (79,80). However,
the presence and extent of coronary artery disease,
ischemic burden, old myocardial infarction, and
medication (e.g., diminished chronotropic reserve
with beta-blockers) are all factors determining
assessment (79). Probably the best measure of cardiac
functional reserve is the peak oxygen consumption
measured during maximal exercise and expressed as
ml/kg/min. This variable has been shown to be pre-
dictive of survival in the general population and in
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those with myocardial infarction, HF, and virtually all
other chronic conditions.

PULMONARY FUNCTIONAL RESERVE. Pulmonary
functional reserve is the ability of the lung to
augment its respiratory minute volume during stress.
Its measurement is complex and includes several
variables for determination whether exercise capacity
is reduced (mostly the case) or a reduced ventilatory
capacity limits exercise. The breathing reserve,
expressed as the difference between the maximal
voluntary ventilation and the maximum exercise
ventilation, and respiratory frequency represent
valuable criteria for maximal pulmonary exertion
(81). As with cardiac functional reserve, the peak ox-
ygen consumption can be thought of as an objective
surrogate of cardiorespiratory endurance and aerobic
fitness, because it reflects both pulmonary capabil-
ities for ventilation and gas exchange as well as car-
diac output and tissue perfusion (82).

RENAL FUNCTIONAL RESERVE. The concept of renal
functional reserve represents the capacity of intact
nephron mass to increase GFR in response to stress
and stands for the difference between peak “stress”
GFR induced by protein load (oral or intravenous)
and the baseline GFR (61). In physiological (e.g.,
pregnancy or solitary kidney) or pathological hy-
perfiltration (e.g., diabetes mellitus or nephrotic
syndrome), renal functional reserve allows for an in-
crease in GFR by recruitment of dormant nephrons,
replacing the lost function and maintaining the whole
organ GFR. Renal functional reserve may represent a
future tool to exploit renal filtration capacity, even
when subclinical damage is present and creatinine is
still normal, whereas a reduction of renal functional
reserve may represent the equivalent of renal frailty
or susceptibility to insults.

BIOMARKERS

Inflammation is classically defined by 4 elements:
immune cells (typically granulocytes), antibodies,
cell signals (cytokines, interleukins, and so on), and
complement. In the absence of infection, acute organ
injury in the lungs, heart, and kidneys has very little
involvement by granulocytes, antibodies, or comple-
ment. Thus, inflammation, despite its popularity as a
term, may not be optimal to describe the primary role
of abnormal cell signaling in the pathogenesis of
CPRI. Novel biomarkers extend the spectrum to pre-
vention, early diagnostic evaluation, treatment, and
course of the disorder (Central Illustration). However,
the relative paucity of biomarkers that link a cardio-
pulmonary-renal interaction should be emphasized
as an area that needs further study. In the following
text, we review a select group of currently-
established and promising future biomarkers in CPRI.

HIGH-SENSITIVITY CARDIAC TROPONIN. High-sensitivity
troponin I and T have been introduced as biomarkers
of myocardial injury detectable at a much earlier
stage compared with prior troponin assays. In stable
PH, chronic obstructive pulmonary disease, and CKD,
elevated levels may indicate subclinical myocardial
injury that subsequently contributes to HF (83,84).
Knowledge of its determinants in CPRI may guide
further research and help to stratify patients at early
cardiovascular risk.

B-TYPE NATRIURETIC PEPTIDE AND N-TERMINAL

PRO–B-TYPE NATRIURETIC PEPTIDE. B-type natri-
uretic peptide (BNP) and its inactive cleavage protein
N-terminal pro–B-type natriuretic peptide (NT-
proBNP) are markers of cardiac stretch from increased
wall tension, and are established diagnostic, prog-
nostic, and management tools for acutely decom-
pensated HF, chronic HF, and acute coronary
syndromes (85). BNP is also prognostic for PH, prob-
ably due to increased right ventricular wall tension
and up-regulation of the pre-proBNP gene (86). Ele-
vations in BNP in the setting of acutely decom-
pensated HF and acute coronary syndromes is
associated with an increased risk of AKI (38,85).
Patients with CKD have higher levels of BNP than age-
and sex-matched patients with normal renal func-
tion, and this probably represents both increased
cardiac production of BNP due to subclinical pressure
overload, volume overload, and cardiomyopathy as
well as decreased renal clearance, more notably with
NT-proBNP than BNP (38).

SOLUBLE SUPPRESSOR OF TUMORIGENICITY 2. Sol-
uble suppressor of tumorigenicity 2 (ST2) is a circu-
lating inhibitor of the IL-33 receptor and counteracts
the antifibrotic effects of IL-33 (87). Soluble ST2 has
received major attention as it may have an important
role in the development of fibrosis and/or as a
biomarker of disease severity, although it lacks organ
specificity. Higher concentrations are associated with
worse outcome in ARDS and PH (88,89). Soluble ST2
has prognostic value in risk stratification for HF, and
presumably CKD, and is not adversely influenced by
age and impaired renal function (90).

GALECTIN-3. Galectin-3 is a b-galactoside–binding
lectin with putative roles in immunomodulation,
transformation, and aldosterone-induced fibro-
genesis. In the heart, galectin-3 is implicated in the
pathogenesis of fibrosis but is also increased with
normal aging and renal impairment (53). Galectin-3
levels have prognostic value in patients with HF, in-
dependent of etiology and HF typology, and provide
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an additive value to natriuretic peptide measure-
ments. Galectin-3 has been shown to promote TGF-b–
mediated activation of fibroblasts in the lung (91) and
kidney (78). Complementary prospective studies are
needed to assess whether galectin-3 may be used to
predict which patient with cardiac, pulmonary, and
renal involvement may benefit from antifibrotic
agents.

RENAL CELL CYCLE ARREST MARKERS. In the
setting of cellular injury, 1 of the earliest processes to
be affected is the cell cycle, which is down-regulated
to preserve cellular energetics and metabolic func-
tions in the setting of hypoxia or other insults. Both
the proximal and distal renal tubular cells release
tissue inhibitor of metalloproteinase (TIMP)-2 and
insulin-like growth factor binding protein (IGFBP)-7,
which are measured in the urine and appear to
predict a reduction in renal filtration function at $12
h after serious illness (92). The multiplication of the
2 concentrations yields a renal risk score, with a
score >0.3 U having a high negative predictive value
and a score >1.2 a strong positive predictive value in
AKI. The relationship of these cell-cycle arrest
makers in the urine, which have been recently
become available as a commercialized, in-vitro
diagnostic test, and other manifestations of CPRI
have not been explored.

NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN. Neu-
trophil gelatinase associated lipocalin (NGAL) is
expressed in the distal tubules and collecting duct,
seems to be 1 of the earliest renal markers of ischemic
or nephrotoxic injury, and is detected in blood and
urine soon after AKI (93). Moreover, NGAL has been
implicated in the induction of cardiomyocytes
apoptosis and is highly expressed in failing myocar-
dium (65). Plasma NGAL has been associated with
adverse cardiovascular outcomes or death and is a
strong predictor of all-cause mortality in acute
decompensated HF, suggesting that renal damage has
a role in determining the prognosis of HF patients.
However, peak 24-h urinary NGAL seems to predict
best the 30-day mortality and dialysis in intensive
care patients, compared with plasma NGAL and cys-
tatin C (93). In small studies, plasma and urinary
levels of NGAL do not correlate with PH (94). Yet, its
role in acute decompensated right ventricular failure
is not defined. Plasma, but not urinary NGAL, in-
creases markedly with GFR reduction and can possibly
generate a high number of false positive diagnoses
of AKI in stable CKD patients. Both plasma and
urine NGAL are commercially available assays for AKI.

L-TYPE FATTY ACID BINDING PROTEIN. In the
setting of AKI, renal tubular cells release L-type fatty
acid binding protein (L-FABP) into the urine. L-FABP
is a housekeeping protein that moves rapidly out of
the cytosol through the apical membrane of tubular
epithelial cells and has been shown to be an early
marker of AKI (95). It can be readily measured and is
a commercialized urine test for AKI. Its relation-
ships to other manifestations of CPRI have not been
determined.

KIDNEY INJURY MOLECULE-1. Kidney injury molecule
(KIM)-1 is a transmembrane tubular protein solely
expressed in response to ischemic or nephrotoxic
insults to proximal renal tubular cells, and has been
proposed as an early marker of AKI as well as
important in the transition from AKI to CKD (96).
KIM-1 is measurable in blood and urine and is
predictive of AKI in patients undergoing coronary
angiography and in HF (95). Conversely, higher
levels are associated with incident HF risk (97).
There are no data describing the use of KIM-1 in
pulmonary disorders.

USE OF BIOMARKERS IN COMBINATION. The Acute
Dialysis Quality Initiative panel has recommended
the use of both functional (creatinine, cystatin C)
filtration markers as well as renal tubular injury
markers (TIMP-2, IGFBP-7, NGAL, L-FABP, KIM-1,
IL-18, and so on) to both screen and detect AKI as
well as to aid in the prognosis for important out-
comes, including the need for dialysis and mortality
(98). This has been well supported by recent pub-
lished data in several settings including patients un-
dergoing cardiac surgery (99).

CONCLUSIONS

We have summarized current concepts in the patho-
genesis of CPRI including abnormalities, cardiopul-
monary and systemic hemodynamics, neurohormonal
activation, abnormal cell signaling, and tissue fi-
brosis. A sustained injury to the alveolar-capillary
barrier can initiate lung structural and vascular
remodeling, leading to chronic lung disease and pul-
monary hypertension. Cardiac injury represents the
origin of cascading deleterious events that may lead
to myocardial remodeling with fibrosis and heart
failure. Acute kidney injury might occur as a result
of abnormal immune cell signaling of the injured
tubular epithelial cells, whereas recurrent AKI leads
to an elevated risk for subsequent CKD development.
Much is yet to be learned about the time sequence of
organ injury and damage and what, if any, are the key
modifiable mediators in the propagation of organ
dysfunction. Multiple disciplines working together
hold the hope of future interventions that can lead to
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improved survival in the critically ill patient with
evidence of cardiac, pulmonary, and renal failure.
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