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Comprehensive molecular portraits of
human breast tumours
The Cancer Genome Atlas Network*

We analysed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing,
messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our ability to integrate information
across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence
of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular
heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at .10% incidence across all
breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment
of specific mutations in GATA3, PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel
protein-expression-defined subgroups, possibly produced by stromal/microenvironmental elements, and integrated
analyses identified specific signalling pathways dominant in each molecular subtype including a HER2/phosphorylated
HER2/EGFR/phosphorylated EGFR signature within the HER2-enriched expression subtype. Comparison of basal-like
breast tumours with high-grade serous ovarian tumours showed many molecular commonalities, indicating a related
aetiology and similar therapeutic opportunities. The biological finding of the four main breast cancer subtypes caused by
different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable
plasticity and heterogeneity occurs within, and not across, these major biological subtypes of breast cancer.

Breast cancer is one of the most common cancers with greater than
1,300,000 cases and 450,000 deaths each year worldwide. Clinically,
this heterogeneous disease is categorized into three basic therapeutic
groups. The oestrogen receptor (ER) positive group is the most
numerous and diverse, with several genomic tests to assist in predict-
ing outcomes for ER1 patients receiving endocrine therapy1,2. The
HER2 (also called ERBB2) amplified group3 is a great clinical success
because of effective therapeutic targeting of HER2, which has led to
intense efforts to characterize other DNA copy number aberrations4,5.
Triple-negative breast cancers (TNBCs, lacking expression of ER,
progesterone receptor (PR) and HER2), also known as basal-like
breast cancers6, are a group with only chemotherapy options, and
have an increased incidence in patients with germline BRCA1 muta-
tions7,8 or of African ancestry9.

Most molecular studies of breast cancer have focused on just one or
two high information content platforms, most frequently mRNA
expression profiling or DNA copy number analysis, and more
recently massively parallel sequencing10–12. Supervised clustering of
mRNA expression data has reproducibly established that breast
cancers encompass several distinct disease entities, often referred to
as the intrinsic subtypes of breast cancer13,14. The recent development of
additional high information content assays focused on abnormalities
in DNA methylation, microRNA (miRNA) expression and protein
expression, provide further opportunities to characterize more com-
pletely the molecular architecture of breast cancer. In this study, a
diverse set of breast tumours were assayed using six different technology
platforms. Individual platform and integrated pathway analyses iden-
tified many subtype-specific mutations and copy number changes that
identify therapeutically tractable genomic aberrations and other events
driving tumour biology.

Samples and clinical data
Tumour and germline DNA samples were obtained from 825
patients. Different subsets of patients were assayed on each platform:

466 tumours from 463 patients had data available on five platforms
including Agilent mRNA expression microarrays (n 5 547), Illumina
Infinium DNA methylation chips (n 5 802), Affymetrix 6.0 single
nucleotide polymorphism (SNP) arrays (n 5 773), miRNA sequencing
(n 5 697), and whole-exome sequencing (n 5 507); in addition, 348 of
the 466 samples also had reverse-phase protein array (RPPA) data
(n 5 403). Owing to the short median overall follow up (17 months)
and the small number of overall survival events (93 out of 818), survival
analyses will be presented in a later publication. Demographic and
clinical characteristics are presented in Supplementary Table 1.

Significantly mutated genes in breast cancer
Overall, 510 tumours from 507 patients were subjected to whole-
exome sequencing, identifying 30,626 somatic mutations comprised
of 28,319 point mutations, 4 dinucleotide mutations, and 2,302
insertions/deletions (indels) (ranging from 1 to 53 nucleotides). The
point mutations included 6,486 silent, 19,045 missense, 1,437
nonsense, 26 read-through, 506 splice-site mutations, and 819 muta-
tions in RNA genes. Comparison to COSMIC and OMIM databases
identified 619 mutations across 177 previously reported cancer genes.
Of 19,045 missense mutations, 9,484 were predicted to have a high
probability of being deleterious by Condel15. The MuSiC package16,
which determines the significance of the observed mutation rate of
each gene based on the background mutation rate, identified 35 sig-
nificantly mutated genes (excluding LOC or Ensembl gene IDs) by at
least two tests (convolution and likelihood ratio tests) with false dis-
covery rate (FDR) ,5% (Supplementary Table 2).

In addition to identifying nearly all genes previously implicated in
breast cancer (PIK3CA, PTEN, AKT1, TP53, GATA3, CDH1, RB1,
MLL3, MAP3K1 and CDKN1B), a number of novel significantly
mutated genes were identified including TBX3, RUNX1, CBFB, AFF2,
PIK3R1, PTPN22, PTPRD, NF1, SF3B1 and CCND3. TBX3, which is
mutated in ulnar-mammary syndrome and involved in mammary
gland development17, harboured 13 mutations (8 frame-shift indels,
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1 in-frame deletion, 1 nonsense, and 3 missense), suggesting a loss of
function. Additionally, 2 mutations were found in TBX4 and 1 muta-
tion in TBX5, which are genes involved in Holt–Oram syndrome18.
Two other transcription factors, CTCF and FOXA1, were at or near
significance harbouring 13 and 8 mutations, respectively. RUNX1 and
CBFB, both rearranged in acute myeloid leukaemia and interfering
with haematopoietic differentiation, harboured 19 and 9 mutations,
respectively. PIK3R1 contained 14 mutations, most of which clustered
in the PIK3CA interaction domain similar to previously identified
mutations in glioma19 and endometrial cancer20. We also observed a
statistically significant exclusion pattern among PIK3R1, PIK3CA,
PTEN and AKT1 mutations (P 5 0.025). Mutation of splicing factor
SF3B1, previously described in myelodysplastic syndromes21 and
chronic lymphocytic leukaemia22, was significant with 15 non-silent
mutations, of which 4 were a recurrent K700E substitution. Two
protein tyrosine phosphatases (PTPN22 and PTPRD) were also signifi-
cantly mutated; frequent deletion/mutation of PTPRD is observed in
lung adenocarcinoma23.

Mutations and mRNA-expression subtype associations
We analysed the somatic mutation spectrum within the context of the
four mRNA-expression subtypes, excluding the normal-like group
owing to small numbers (n 5 8) (Fig. 1). Several significantly mutated
genes showed mRNA-subtype-specific (Supplementary Figs 1–3) and
clinical-subtype-specific patterns of mutation (Supplementary Table 2).
Significantly mutated genes were considerably more diverse and
recurrent within luminal A and luminal B tumours than within
basal-like and HER2-enriched (HER2E) subtypes; however, the overall
mutation rate was lowest in luminal A subtype and highest in the basal-
like and HER2E subtypes. The luminal A subtype harboured the most
significantly mutated genes, with the most frequent being PIK3CA
(45%), followed by MAP3K1, GATA3, TP53, CDH1 and MAP2K4.
Twelve per cent of luminal A tumours contained likely inactivating
mutations in MAP3K1 and MAP2K4, which represent two contiguous

steps in the p38–JNK1 stress kinase pathway24. Luminal B cancers
exhibited a diversity of significantly mutated genes, with TP53 and
PIK3CA (29% each) being the most frequent. The luminal tumour
subtypes markedly contrasted with basal-like cancers where TP53
mutations occurred in 80% of cases and the majority of the luminal
significantly mutated gene repertoire, except PIK3CA (9%), were
absent or near absent. The HER2E subtype, which has frequent
HER2 amplification (80%), had a hybrid pattern with a high frequency
of TP53 (72%) and PIK3CA (39%) mutations and a much lower fre-
quency of other significantly mutated genes including PIK3R1 (4%).

Intrinsic mRNA subtypes differed not only by mutation frequencies
but also by mutation type. Most notably, TP53 mutations in basal-like
tumours were mostly nonsense and frame shift, whereas missense
mutations predominated in luminal A and B tumours (Supplemen-
tary Fig. 1). Fifty-eight somatic GATA3 mutations, some of which were
previously described25, were detected including a hotspot 2-base-pair
deletion within intron 4 only in the luminal A subtype (13 out of 13
mutants) (Supplementary Fig. 2). In contrast, 7 out of 9 frame-shift
mutations in exon 5 (DNA binding domain) occurred in luminal B
cancers. PIK3CA mutation frequency and spectrum also varied by
mRNA subtype (Supplementary Fig. 3); the recurrent PIK3CA
E545K mutation was present almost exclusively within luminal A
(25 out of 27) tumours. CDH1 mutations were common (30 out of
36) within the lobular histological subtype and corresponded with
lower CDH1 mRNA (Supplementary Fig. 4) and protein expression.
Finally, we identified 4 out of 8 somatic variants in HER2 within lobular
cancers, three of which were within the tyrosine kinase domain.

We performed analyses on a selected set of genes26 using the normal
tissue DNA data and detected a number of germline predisposing
variants. These analyses identified 47 out of 507 patients with
deleterious germline variants, representing nine different genes
(ATM, BRCA1, BRCA2, BRIP1, CHEK2, NBN, PTEN, RAD51C and
TP53; Supplementary Table 3), supporting the hypothesis that ,10%
of sporadic breast cancers may have a strong germline contribution.
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Figure 1 | Significantly mutated genes and correlations with genomic and
clinical features. Tumour samples are grouped by mRNA subtype: luminal A
(n 5 225), luminal B (n 5 126), HER2E (n 5 57) and basal-like (n 5 93). The
left panel shows non-silent somatic mutation patterns and frequencies for
significantly mutated genes. The middle panel shows clinical features: dark
grey, positive or T2–4; white, negative or T1; light grey, N/A or equivocal.

N, node status; T, tumour size. The right panel shows significantly mutated
genes with frequent copy number amplifications (red) or deletions (blue). The
far-right panel shows non-silent mutation rate per tumour (mutations per
megabase, adjusted for coverage). The average mutation rate for each
expression subtype is indicated. Hypermutated: mutation rates .3 s.d. above
the mean (.4.688, indicated by grey line).
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These data confirmed the association between the presence of
germline BRCA1 mutations and basal-like breast cancers7,8.

Gene expression analyses (mRNA and miRNA)
Several approaches were used to look for structure in the mRNA
expression data. We performed an unsupervised hierarchical cluster-
ing analysis of 525 tumours and 22 tumour-adjacent normal tissues
using the top 3,662 variably expressed genes (Supplementary Fig. 5);
SigClust analysis identified 12 classes (5 classes with .9 samples per
class). We performed a semi-supervised hierarchical cluster analysis
using a previously published ‘intrinsic gene list’14, which identified 13
classes (9 classes with .9 samples per class) (Supplementary Fig. 6).
We also classified each sample using the 50-gene PAM50 model14

(Supplementary Fig. 5). High concordance was observed between
all three analyses; therefore, we used the PAM50-defined subtype
predictor as a common classification metric. There were only eight
normal-like and eight claudin-low tumours27, thus we did not per-
form focussed analyses on these two subtypes.

MicroRNA expression levels were assayed via Illumina sequencing,
using 1,222 miRBase28 v16 mature and star strands as the reference
database of miRNA transcripts/genes. Seven subtypes were identified
by consensus non-negative matrix factorization (NMF) clustering
using an abundance matrix containing the 25% most variable
miRNAs (306 transcripts/genes or MIMATs (miRNA IDs)). These
subtypes correlated with mRNA subtypes, ER, PR and HER2 clinical
status (Supplementary Fig. 7). Of note, miRNA groups 4 and 5
showed high overlap with the basal-like mRNA subtype and con-
tained many TP53 mutations. The remaining miRNA groups (1–3,
6 and 7) were composed of a mixture of luminal A, luminal B and
HER2E with little correlation with the PAM50 defined subtypes. With
the exception of TP53—which showed a strong positive correlation—
and PIK3CA and GATA3—which showed negative associations with
groups 4 and 5, respectively—there was little correlation with muta-
tion status and miRNA subtype.

DNA methylation
Illumina Infinium DNA methylation arrays were used to assay 802
breast tumours. Data from HumanMethylation27 (HM27) and
HumanMethylation450 (HM450) arrays were combined and filtered
to yield a common set of 574 probes used in an unsupervised clustering
analysis, which identified five distinct DNA methylation groups
(Supplementary Fig. 8). Group 3 showed a hypermethylated pheno-
type and was significantly enriched for luminal B mRNA subtype and
under-represented for PIK3CA, MAP3K1 and MAP2K4 mutations.
Group 5 showed the lowest levels of DNA methylation, overlapped
with the basal-like mRNA subtype, and showed a high frequency of
TP53 mutations. HER2-positive (HER21) clinical status, or the
HER2E mRNA subtype, had only a modest association with the
methylation subtypes.

A supervised analysis of the DNA methylation and mRNA expres-
sion data was performed to compare DNA methylation group 3
(N 5 49) versus all tumours in groups 1, 2 and 4 (excluding group 5,
which consisted predominantly of basal-like tumours). This analysis
identified 4,283 genes differentially methylated (3,735 higher in group
3 tumours) and 1,899 genes differentially expressed (1,232 downregu-
lated); 490 genes were both methylated and showed lower expression
in group 3 tumours (Supplementary Table 4). A DAVID (database for
annotation, visualization and integrated discovery) functional annota-
tion analysis identified ‘extracellular region part’ and ‘Wnt signalling
pathway’ to be associated with this 490-gene set; the group 3 hyper-
methylated samples showed fewer PIK3CA and MAP3K1 mutations,
and lower expression of Wnt-pathway genes.

DNA copy number
A total of 773 breast tumours were assayed using Affymetrix 6.0
SNP arrays. Segmentation analysis and GISTIC were used to

identify focal amplifications/deletions and arm-level gains and losses
(Supplementary Table 5). These analyses confirmed all previously
reported copy number variations and highlighted a number of sig-
nificantly mutated genes including focal amplification of regions con-
taining PIK3CA, EGFR, FOXA1 and HER2, as well as focal deletions of
regions containing MLL3, PTEN, RB1 and MAP2K4 (Supplementary
Fig. 9); in all cases, multiple genes were included within each altered
region. Importantly, many of these copy number changes correlated
with mRNA subtype including characteristic loss of 5q and gain of
10p in basal-like cancers5,29 and gain of 1q and/or 16q loss in luminal
tumours4. NMF clustering of GISTIC segments identified five copy
number clusters/groups that correlated with mRNA subtypes, ER, PR
and HER2 clinical status, and TP53 mutation status (Supplementary
Fig. 10). In addition, this aCGH subtype classification was highly
correlated with the aCGH subtypes recently defined by ref. 30
(Supplementary Fig. 11).

Reverse phase protein arrays
Quantified expression of 171 cancer-related proteins and phospho-
proteins by RPPA was performed on 403 breast tumours31.
Unsupervised hierarchical clustering analyses identified seven
subtypes; one class contained too few cases for further analysis
(Supplementary Fig. 12). These protein subtypes were highly
concordant with the mRNA subtypes, particularly with basal-like
and HER2E mRNA subtypes. Closer examination of the HER2-
containing RPPA-defined subgroup showed coordinated overexpres-
sion of HER2 and EGFR with a strong concordance with phosphorylated
HER2 (pY1248) and EGFR (pY992), probably from heterodimeriza-
tion and cross-phosphorylation. Although there is a potential for
modest cross reactivity of antibodies against these related total and
phospho-proteins, the concordance of phosphorylation of HER2 and
EGFR was confirmed using multiple independent antibodies.

In RPPA-defined luminal tumours, there was high protein expres-
sion of ER, PR, AR, BCL2, GATA3 and INPP4B, defining mostly
luminal A cancers and a second more heterogeneous protein subgroup
composed of both luminal A and luminal B cancers. Two potentially
novel protein-defined subgroups were identified: reactive I consisted
primarily of a subset of luminal A tumours, whereas reactive II
consisted of a mixture of mRNA subtypes. These groups are termed
‘reactive’ because many of the characteristic proteins are probably
produced by the microenvironment and/or cancer-activated fibroblasts
including fibronectin, caveolin 1 and collagen VI. These two RPPA
groups did not have a marked difference in the percentage tumour cell
content when compared to each other, or the other protein subtypes,
as assessed by SNP array analysis or pathological examination. In
addition, supervised analyses of reactive I versus II groups using
miRNA expression, DNA methylation, mutation, or DNA copy
number data identified no significant differences between these groups,
whereas similar supervised analyses using protein and mRNA expres-
sion identified many differences.

Multiplatform subtype discovery
To reveal higher-order structure in breast tumours based on multiple
data types, significant clusters/subtypes from each of five platforms
were analysed using a multiplatform data matrix subjected to
unsupervised consensus clustering (Fig. 2). This ‘cluster of clusters’
(C-of-C) approach illustrated that basal-like cancers had the most
distinct multiplatform signature as all the different platforms for
the basal-like groups clustered together. To a great extent, the four
major C-of-C subdivisions correlated well with the previously published
mRNA subtypes (driven, in part, by the fact that the four intrinsic
subtypes were one of the inputs). Therefore, we also performed
C-of-C analysis with no mRNA data present (Supplementary Fig. 13)
or with the 12 unsupervised mRNA subtypes (Supplementary Fig. 14),
and in each case 4–6 groups were identified. Recent work identified ten
copy-number-based subgroups in a 997 breast cancer set30. We evaluated
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this classification in a C-of-C analysis instead of our five-class copy
number subtypes, with either the PAM50 (Supplementary Fig. 15) or
12 unsupervised mRNA subtypes (Supplementary Fig. 16); each of
these C-of-C classifications was highly correlated with PAM50
mRNA subtypes and with the other C-of-C analyses (Fig. 2). The
transcriptional profiling and RPPA platforms demonstrated a high
correlation with the consensus structure, indicating that the informa-
tion content from copy number aberrations, miRNAs and methylation
is captured at the level of gene expression and protein function.

Luminal/ER1 summary analysis
Luminal/ER1 breast cancers are the most heterogeneous in terms of
gene expression (Supplementary Fig. 5), mutation spectrum (Fig. 1),
copy number changes (Supplementary Fig. 9) and patient outcomes1,14.
One of the most dominant features is high mRNA and protein expres-
sion of the luminal expression signature (Supplementary Fig. 5), which
contains ESR1, GATA3, FOXA1, XBP1 and MYB; the luminal/ER1

cluster also contained the largest number of significantly mutated
genes. Most notably, GATA3 and FOXA1 were mutated in a mutually
exclusive fashion, whereas ESR1 and XBP1 were typically highly
expressed but infrequently mutated. Mutations in RUNX1 and its
dimerization partner CBFB may also have a role in aberrant ER
signalling in luminal tumours, as RUNX1 functions as an ER ‘DNA
tethering factor’32. PARADIGM33 analysis comparing luminal versus
basal-like cancers further emphasized the presence of a hyperactivated
FOXA1–ER complex as a critical network hub differentiating these two
tumour subtypes (Supplementary Fig. 17).

A confirmatory finding here was the high mutation frequency
of PIK3CA in luminal/ER1 breast cancers34,35. Through multiple

technology platforms, we examined possible relationships between
PIK3CA mutation, PTEN loss, INPP4B loss and multiple gene
and protein expression signatures of pathway activity. RPPA data
demonstrated that pAKT, pS6 and p4EBP1, typical markers of
phosphatidylinositol-3-OH kinase (PI(3)K) pathway activation, were
not elevated in PIK3CA-mutated luminal A cancers; instead, they
were highly expressed in basal-like and HER2E mRNA subtypes
(the latter having frequent PIK3CA mutations) and correlated
strongly with INPP4B and PTEN loss, and to a degree with PIK3CA
amplification. Similarly, protein36 and three mRNA signatures37–39 of
PI(3)K pathway activation were enriched in basal-like over luminal A
cancers (Fig. 3a). This apparent disconnect between the presence of
PIK3CA mutations and biomarkers of pathway activation has been
previously noted36.

Another striking luminal/ER1 subtype finding was the frequent
mutation of MAP3K1 and MAP2K4, which represent two contiguous
steps within the p38–JNK1 pathway24,40. These mutations are predicted
to be inactivating, with MAP2K4 also a target of focal DNA loss in
luminal tumours (Supplementary Fig. 9). To explore the possible
interplay between PIK3CA, MAP3K and MAP2K4 signalling, MEMo
analysis41 was performed to identify mutually exclusive alterations
targeting frequently altered genes likely to belong to the same pathway
(Fig. 4). Across all breast cancers, MEMo identified a set of modules
that highlight the differential activation events within the receptor
tyrosine kinase (RTK)–PI(3)K pathway (Fig. 4a); mutations of
PIK3CA were very common in luminal/ER1 cancers whereas PTEN
loss was more common in basal-like tumours. Almost all MAP3K1and
MAP2K4 mutations were in luminal tumours, yet MAP3K1 and
MAP2K4 appeared almost mutually exclusive relative to one another.

The TP53 pathway was differentially inactivated in luminal/ER1

breast cancers, with a low TP53 mutation frequency in luminal A
(12%) and a higher frequency in luminal B (29%) cancers (Fig. 1). In
addition to TP53 itself, a number of other pathway-inactivating events
occurred including ATM loss and MDM2 amplification (Figs 3b and
4b), both of which occurred more frequently within luminal B cancers.
Gene expression analysis demonstrated that individual markers of
functional TP53 (GADD45A and CDKN1A), and TP53 activity42,43

signatures, were highest in luminal A cancers (Fig. 3b). These data
indicate that the TP53 pathway remains largely intact in luminal A
cancers but is often inactivated in the more aggressive luminal B
cancers44. Other PARADIGM-based pathway differences driving
luminal B versus luminal A included hyperactivation of transcriptional
activity associated with MYC and FOXM1 proliferation.

The critical retinoblastoma/RB1 pathway also showed mRNA-
subtype-specific alterations (Fig. 3c). RB1 itself, by mRNA and
protein expression, was detectable in most luminal cancers, with
highest levels within luminal A. A common oncogenic event was
cyclin D1 amplification and high expression, which preferentially
occurred within luminal tumours, and more specifically within
luminal B. In contrast, the presumed tumour suppressor CDKN2C
(also called p18) was at its lowest levels in luminal A cancers, con-
sistent with observations in mouse models45. Finally, RB1 activity
signatures were also high in luminal cancers46–48. Luminal A tumours,
which have the best prognosis, are the most likely to retain activity of
the major tumour suppressors RB1 and TP53.

These genomic characterizations also provided clues for druggable
targets. We compiled a drug target table in which we defined a target
as a gene/protein for which there is an approved or investigational
drug in human clinical trials targeting the molecule or canonical
pathway (Supplementary Table 6). In luminal/ER1 cancers, the high
frequency of PIK3CA mutations suggests that inhibitors of this
activated kinase or its signalling pathway may be beneficial. Other
potential significantly mutated gene drug candidates include AKT1
inhibitors (11 out of 12 AKT1 variants were luminal) and PARP
inhibitors for BRCA1/BRCA2 mutations. Although still unapproved
as biomarkers, many potential copy-number-based drug targets
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were identified including amplifications of fibroblast growth factor
receptors (FGFRs) and IGFR1, as well as cyclin D1, CDK4 and CDK6.
A summary of the general findings in luminal tumours and the other
subtypes is presented in Table 1.

HER2-based classifications and summary analysis
DNA amplification of HER2 was readily evident in this study
(Supplementary Fig. 9) together with overexpression of multiple

HER2-amplicon-associated genes that in part define the HER2E
mRNA subtype (Supplementary Fig. 5). However, not all clinically
HER21 tumours are of the HER2E mRNA subtype, and not all
tumours in the HER2E mRNA subtype are clinically HER21.
Integrated analysis of the RPPA and mRNA data clearly identified a
HER21 group (Supplementary Fig. 12). When the HER21 protein
and HER2E mRNA subtypes overlapped, a strong signal of EGFR,
pEGFR, HER2 and pHER2 was observed. However, only ,50% of
clinically HER21 tumours fall into this HER2E-mRNA-subtype/
HER2-protein group, the rest of the clinically HER21 tumours were
observed predominantly in the luminal mRNA subtypes.

These data indicate that there exist at least two types of clinically
defined HER21 tumours. To identify differences between these groups,
a supervised gene expression analysis comparing 36 HER2E-mRNA-
subtype/HER21 versus 31 luminal-mRNA-subtype/HER21 tumours
was performed and identified 302 differentially expressed genes
(q-value 5 0%) (Supplementary Fig. 18 and Supplementary Table 7).
These genes largely track with ER status but also indicated that HER2E-
mRNA-subtype/HER21 tumours showed significantly higher expres-
sion of a number of RTKs including FGFR4, EGFR, HER2 itself, as well
as genes within the HER2 amplicon (including GRB7). Conversely, the
luminal-mRNA-subtype/HER21 tumours showed higher expression
of the luminal cluster of genes including GATA3, BCL2 and ESR1.
Further support for two types of clinically defined HER21 disease
was evident in the somatic mutation data supervised by either
mRNA subtype or ER status; TP53 mutations were significantly
enriched in HER2E or ER-negative tumours whereas GATA3 muta-
tions were only observed in luminal subtypes or ER1 tumours.

Analysis of the RPPA data according to mRNA subtype identified
36 differentially expressed proteins (q-value ,5%) (Supplementary
Fig. 18G and Supplementary Table 8). The EGFR/pEGFR/HER2/
pHER2 signal was again observed and present within the HER2E-
mRNA-subtype/HER21 tumours, as was high pSRC and pS6; con-
versely, many protein markers of luminal cancers again distinguished
the luminal-mRNA-subtype/HER21 tumours. Given the importance
of clinical HER2 status, a more focused analysis was performed based
on the RPPA-defined protein expression of HER2 (Supplementary
Fig. 19)—the results strongly recapitulated findings from the RPPA
and mRNA subtypes including a high correlation between HER2
clinical status, HER2 protein by RPPA, pHER2, EGFR and pEGFR.
These multiple signatures, namely HER2E mRNA subtype, HER2
amplicon genes by mRNA expression, and RPPA EGFR/pEGFR/
HER2/pHER2 signature, ultimately identify at least two groups/
subtypes within clinically HER21 tumours (Table 1). These signatures
represent breast cancer biomarker(s) that could potentially predict
response to anti-HER2 targeted therapies.

Many therapeutic advances have been made for clinically HER21

disease. This study has identified additional somatic mutations that
represent potential therapeutic targets within this group, including a
high frequency of PIK3CA mutations (39%), a lower frequency of
PTEN and PIK3R1 mutations (Supplementary Table 6), and genomic
losses of PTEN and INPP4B. Other possible druggable mutations
included variants within HER family members including two somatic
mutations in HER2, two within EGFR, and five within HER3.
Pertuzumab, in combination with trastuzumab, targets the HER2–
HER3 heterodimer49; however, these data suggest that targeting EGFR
with HER2 could also be beneficial. Finally, the HER2E mRNA
subtype typically showed high aneuploidy, the highest somatic
mutation rate (Table 1), and DNA amplification of other potential
therapeutic targets including FGFRs, EGFR, CDK4 and cyclin D1.

Basal-like summary analysis
The basal-like subtype was discovered more than a decade ago by
first-generation cDNA microarrays13. These tumours are often
referred to as triple-negative breast cancers (TNBCs) because most
basal-like tumours are typically negative for ER, PR and HER2.
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Figure 3 | Integrated analysis of the PI(3)K, TP53 and RB1 pathways. Breast
cancer subtypes differ by genetic and genomic targeting events, with
corresponding effects on pathway activity. a–c, For PI(3)K (a), TP53 (b) and
RB1 (c) pathways, key genes were selected using prior biological knowledge.
Multiple mRNA expression signatures for a given pathway were defined
(details in Supplementary Methods; PI(3)K:Saal, PTEN loss in human breast
tumours; CMap, PI(3)K/mTOR inhibitor treatment in vitro; Majumder, Akt
overexpression in mouse model; TP53: IARC, expert-curated p53 targets; GSK,
TP53 mutant versus wild-type cell lines; KANNAN, TP53 overexpression in
vitro; TROESTER, TP53 knockdown in vitro; RB: CHICAS, RB1 mouse
knockout versus wild type; LARA, RB1 knockdown in vitro;
HERSCHKOWITZ, RB1 loss of heterozygosity (LOH) in human breast
tumours) and applied to the gene expression data, in order to score each
tumour for relative signature activity (yellow, more active). The PI(3)K panel
includes a protein-based (RPPA) proteomic signature. Tumours were ordered
first by mRNA subtype, although specific ordering differs between the panels. P
values were calculated by a Pearson’s correlation or a Chi-squared test.
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However, ,75% of TNBCs are basal-like with the other 25% com-
prised of all other mRNA subtypes6. In this data set, there was a high
degree of overlap between these two distinctions with 76 TNBCs, 81
basal-like, and 65 that were both TNBCs and basal-like. Given the
known heterogeneity of TNBCs, and that the basal-like subtype
proved to be distinct on every platform, we chose to use the basal-like
distinction for comparative analyses.

Basal-like tumours showed a high frequency of TP53 mutations
(80%)9, which when combined with inferred TP53 pathway activity
suggests that loss of TP53 function occurs within most, if not all,
basal-like cancers (Fig. 3b). In addition to loss of TP53, a MEMo
analysis reconfirmed that loss of RB1 and BRCA1 are basal-like
features (Fig. 4c)47,50. PIK3CA was the next most commonly mutated
gene (,9%); however, inferred PI(3)K pathway activity, whether
from gene37–39, protein36, or high PI(3)K/AKT pathway activities,
was highest in basal-like cancers (Fig. 3a). Alternative means of
activating the PI(3)K pathway in basal-like cancers probably includes
loss of PTEN and INPP4B and/or amplification of PIK3CA. A recent
paper12 performed exome sequencing of 102 TNBCs. Five of the top
six most frequent TNBC mutations in ref. 12 were also observed at a
similar frequency in our TNBC subset (Myo3A not present here); of
those five, three passed our test as a significantly mutated gene in
TNBCs (Supplementary Table 2).

Expression features of basal-like tumours include a characteristic
signature containing keratins 5, 6 and 17 and high expression of
genes associated with cell proliferation (Supplementary Fig. 5).
A PARADIGM33 analysis of basal-like versus luminal tumours
emphasized the importance of hyperactivated FOXM1 as a transcrip-
tional driver of this enhanced proliferation signature (Supplementary
Fig. 17). PARADIGM also identified hyperactivated MYC and HIF1-
a/ARNT network hubs as key regulatory features of basal-like
cancers. Even though chromosome 8q24 is amplified across all
subtypes (Supplementary Fig. 9), high MYC activation seems to be
a basal-like characteristic51.

Given the striking contrasts between basal-like and luminal/
HER2E subtypes, we performed a MEMo analysis on basal-like
tumours alone. The top-scoring module included ATM mutations,
BRCA1 and BRCA2 inactivation, RB1 loss and cyclin E1 amplification
(Fig. 4c). Notably, these same modules were identified previously for
serous ovarian cancers41. Furthermore, the basal-like (and TNBC)
mutation spectrum was reminiscent of the spectrum seen in serous
ovarian cancers52 with only one gene (that is, TP53) at .10% muta-
tion frequency. To explore possible similarities between serous
ovarian and the breast basal-like cancers, we performed a number
of analyses comparing ovarian versus breast luminal, ovarian versus
breast basal-like, and breast basal-like versus breast luminal cancers
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Figure 4 | Mutual exclusivity modules in cancer (MEMo) analysis. Mutual
exclusivity modules are represented by their gene components and connected
to reflect their activity in distinct pathways. For each gene, the frequency of
alteration in basal-like (right box) and non-basal (left box) is reported. Next to
each module is a fingerprint indicating what specific alteration is observed for
each gene (row) in each sample (column). a, MEMo identified several
overlapping modules that recapitulate the RTK–PI(3)K and p38–JNK1

signalling pathways and whose core was the top-scoring module. b, MEMo
identified alterations to TP53 signalling as occurring within a statistically
significant mutually exclusive trend. c, A basal-like only MEMo analysis
identified one module that included ATM mutations, defects at BRCA1 and
BRCA2, and deregulation of the RB1 pathway. A gene expression heat map is
below the fingerprint to show expression levels.
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(Fig. 5). Comparing copy number landscapes, we observed several
common features between ovarian and basal-like tumours including
widespread genomic instability and common gains of 1q, 3q, 8q and
12p, and loss of 4q, 5q and 8p (Supplementary Fig. 20A). Using a
more global copy number comparison, we examined the overall
fraction of the genome altered and the overall copy number correla-
tion of ovarian cancers versus each breast cancer mRNA subtype

(Supplementary Fig. 20A, B); in both cases, basal-like tumours were
the most similar to the serous ovarian carcinomas.

We systematically looked for other common features between
serous ovarian and basal-like tumours when each was compared to
luminal. We identified: (1) BRCA1 inactivation; (2) RB1 loss and
cyclin E1 amplification; (3) high expression of AKT3; (4) MYC
amplification and high expression; and (5) a high frequency of
TP53 mutations (Fig. 5a). An additional supervised analysis of a large,
external multitumour type transcriptomic data set (Gene Expression
Omnibus accession GSE2109) was performed where each TCGA
(The Cancer Genome Atlas) breast tumour expression profile was
compared via a correlation analysis to that of each tumour in the
multitumour set. Basal-like breast cancers clearly showed high
mRNA expression correlations with serous ovarian cancers, as well
as with lung squamous carcinomas (Fig. 5b). A PARADIGM analysis
that calculates whether a gene or pathway feature is both differentially
activated in basal-like versus luminal cancers and has higher overall
activity across the TCGA ovarian samples was performed; this iden-
tified comparably high pathway activity of the HIF1-a/ARNT, MYC
and FOXM1 regulatory hubs in both ovarian and basal-like cancers
(Supplementary Fig. 20C). The common findings of TP53, RB1 and
BRCA1 loss, with MYC amplification, strongly suggest that these are
shared driving events for basal-like and serous ovarian carcinogenesis.
This suggests that common therapeutic approaches should be con-
sidered, which is supported by the activity of platinum analogues and
taxanes in breast basal-like and serous ovarian cancers.

Given that most basal-like cancers are TNBCs, finding new drug
targets for this group is critical. Unfortunately, the somatic mutation
repertoire for basal-like breast cancers has not provided a common
target aside from BRCA1 and BRCA2. Here we note that ,20% of
basal-like tumours had a germline (n 5 12) and/or somatic (n 5 8)
BRCA1 or BRCA2 variant, which suggests that one in five basal-like
patients might benefit from PARP inhibitors and/or platinum com-
pounds53,54. The copy number landscape of basal-like cancers showed
multiple amplifications and deletions, some of which may provide
therapeutic targets (Supplementary Table 6). Potential targets include
losses of PTEN and INPP4B, both of which have been shown to
sensitize cell lines to PI(3)K pathway inhibitors55,56. Interestingly,
many of the components of the PI(3)K and RAS–RAF–MEK pathway
were amplified (but not typically mutated) in basal-like cancers
including PIK3CA (49%), KRAS (32%), BRAF (30%) and EGFR
(23%). Other RTKs that are plausible drug targets and amplified in

Table 1 | Highlights of genomic, clinical and proteomic features of subtypes
Subtype Luminal A Luminal B Basal-like HER2E

ER1/HER22 (%) 87 82 10 20
HER21 (%) 7 15 2 68
TNBCs (%) 2 1 80 9
TP53 pathway TP53 mut (12%); gain of MDM2

(14%)
TP53 mut (32%); gain of MDM2
(31%)

TP53 mut (84%); gain of MDM2
(14%)

TP53 mut (75%); gain of
MDM2 (30%)

PIK3CA/PTEN pathway PIK3CA mut (49%); PTEN
mut/loss (13%); INPP4B loss (9%)

PIK3CA mut (32%) PTEN mut/loss
(24%) INPP4B loss (16%)

PIK3CA mut (7%); PTEN mut/loss
(35%); INPP4B loss (30%)

PIK3CA mut (42%); PTEN
mut/loss (19%); INPP4B
loss (30%)

RB1 pathway Cyclin D1 amp (29%); CDK4 gain
(14%); low expression of
CDKN2C; high expression of RB1

Cyclin D1 amp (58%); CDK4 gain
(25%)

RB1 mut/loss (20%); cyclin E1
amp (9%); high expression of
CDKN2A; low expression of RB1

Cyclin D1 amp (38%);
CDK4 gain (24%)

mRNA expression High ER cluster; low proliferation Lower ER cluster; high proliferation Basal signature; high proliferation HER2 amplicon signature;
high proliferation

Copy number Most diploid; many with quiet
genomes; 1q, 8q, 8p11 gain; 8p,
16q loss; 11q13.3 amp (24%)

Most aneuploid; many with focal
amp; 1q, 8q, 8p11 gain; 8p, 16q
loss; 11q13.3 amp (51%);
8p11.23 amp (28%)

Most aneuploid; high genomic
instability; 1q, 10p gain; 8p, 5q
loss; MYC focal gain (40%)

Most aneuploid; high
genomic instability; 1q, 8q
gain; 8p loss; 17q12 focal
ERRB2 amp (71%)

DNA mutations PIK3CA (49%); TP53 (12%);
GATA3 (14%); MAP3K1 (14%)

TP53 (32%); PIK3CA (32%);
MAP3K1 (5%)

TP53 (84%); PIK3CA (7%) TP53 (75%); PIK3CA
(42%); PIK3R1 (8%)

DNA methylation – Hypermethylated phenotype for
subset

Hypomethylated –

Protein expression High oestrogen signalling; high
MYB; RPPA reactive subtypes

Less oestrogen signalling; high
FOXM1 and MYC; RPPA reactive
subtypes

High expression of DNA repair
proteins, PTEN and INPP4B loss
signature (pAKT)

High protein and phospho-
protein expression of EGFR
and HER2

Percentages are based on 466 tumour overlap list. Amp, amplification; mut, mutation.
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Figure 5 | Comparison of breast and serous ovarian carcinomas.
a, Significantly enriched genomic alterations identified by comparing basal-like
or serous ovarian tumours to luminal cancers. b, Inter-sample correlations
(yellow, positive) between gene transcription profiles of breast tumours
(columns; TCGA data, arranged by subtype) and profiles of cancers from
various tissues of origin (rows; external ‘TGEN expO’ data set, GSE2109)
including ovarian cancers.
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some basal-like cancers include FGFR1, FGFR2, IGFR1, KIT, MET
and PDGFRA. Finally, the PARADIGM identification of high HIF1-
a/ARNT pathway activity suggests that these malignancies might be
susceptible to angiogenesis inhibitors and/or bioreductive drugs that
become activated under hypoxic conditions.

Concluding remarks
The integrated molecular analyses of breast carcinomas that we
report here significantly extends our knowledge base to produce a
comprehensive catalogue of likely genomic drivers of the most
common breast cancer subtypes (Table 1). Our novel observation that
diverse genetic and epigenetic alterations converge phenotypically
into four main breast cancer classes is not only consistent with con-
vergent evolution of gene circuits, as seen across multiple organisms,
but also with models of breast cancer clonal expansion and in vivo cell
selection proposed to explain the phenotypic heterogeneity observed
within defined breast cancer subtypes.

METHODS SUMMARY
Specimens were obtained from patients with appropriate consent from institutional
review boards. Using a co-isolation protocol, DNA and RNA were purified. In total,
800 patients were assayed on at least one platform. Different numbers of patients
were used for each platform using the largest number of patients available at the
time of data freeze; 466 samples (463 patients) were in common across 5 out of 6
platforms (excluding RPPA) and 348 patients were in common on 6 out of 6
platforms. Technology platforms used include: (1) gene expression DNA micro-
arrays52; (2) DNA methylation arrays; (3) miRNA sequencing; (4) Affymetrix SNP
arrays; (5) exome sequencing; and (6) reverse phase protein arrays. Each platform,
except for the exome sequencing, was used in a de novo subtype discovery analysis
(Supplementary Methods) and then included in a single analysis to define an overall
subtype architecture. Additional integrated across-platform computational ana-
lyses were preformed including PARADIGM33 and MEMo41.
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University of North Carolina W. Kimryn Rathmell15, Leigh Thorne15,74, Mei Huang15,74,
Lori Boice15,74, Ashley Hill15; Roswell Park Cancer Institute Carl Morrison75, Carmelo
Gaudioso75, Wiam Bshara75; University of Miami Kelly Daily76, Sophie C. Egea76, Mark
D. Pegram76, Carmen Gomez-Fernandez76; University of Pittsburgh Rajiv Dhir77,
Rohit Bhargava78, Adam Brufsky78; Walter Reed National Military Medical Center
Craig D. Shriver79, Jeffrey A. Hooke79, Jamie Leigh Campbell79, Richard J. Mural80, Hai
Hu80, Stella Somiari80, Caroline Larson80, Brenda Deyarmin80, Leonid Kvecher80,
Albert J. Kovatich81

Disease working group: Matthew J. Ellis3,82,83, Tari A. King69, Hai Hu80, Fergus J.
Couch68, Richard J. Mural80, Thomas Stricker84, Kevin White84, Olufunmilayo
Olopade85, James N. Ingle68, Chunqing Luo80, Yaqin Chen80, Jeffrey R. Marks55,
Frederic Waldman71,72, Maciej Wiznerowicz56,57, Ron Bose3,82,83, Li-Wei Chang86,
Andrew H. Beck10, Ana Maria Gonzalez-Angulo38,70

Datacoordinationcentre:ToddPihl87,Mark Jensen87,Robert Sfeir87, Ari Kahn87, Anna
Chu87, Prachi Kothiyal87, Zhining Wang87, Eric Snyder87, Joan Pontius87, Brenda
Ayala87, Mark Backus87, Jessica Walton87, Julien Baboud87, Dominique Berton87,
Matthew Nicholls87, Deepak Srinivasan87, Rohini Raman87, Stanley Girshik87, Peter
Kigonya87, Shelley Alonso87, Rashmi Sanbhadti87, Sean Barletta87, David Pot87

Project team: National Cancer Institute Margi Sheth88, John A. Demchok88, Kenna R.
Mills Shaw88, Liming Yang88, Greg Eley89, Martin L. Ferguson90, Roy W. Tarnuzzer88,
Jiashan Zhang88, Laura A. L. Dillon88, Kenneth Buetow44, Peter Fielding88; National
Human Genome Research Institute Bradley A. Ozenberger91, Mark S. Guyer91, Heidi J.
Sofia91, Jacqueline D. Palchik91

1The Genome Institute, Washington University, St Louis, Missouri 63108, USA.
2DepartmentofGenetics, WashingtonUniversity, St Louis, Missouri 63110,USA. 3Siteman
Cancer Center, Washington University, St Louis, Missouri 63110, USA. 4Canada’s Michael
Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z,
Canada. 5The Broad Institute ofMIT and Harvard, Cambridge,Massachusetts02142,USA.
6Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
02115, USA. 7Department of Medicine, Harvard Medical School, Boston, Massachusetts
02215, USA. 8Departments of Cancer Biology and Medical Oncology, and the Center for

ARTICLE RESEARCH

0 0 M O N T H 2 0 1 2 | V O L 0 0 0 | N A T U R E | 9

Macmillan Publishers Limited. All rights reserved©2012

www.nature.com/doifinder/10.1038/nature11412
https://cghub.ucsc.edu
https://cghub.ucsc.edu
http://cancergenome.nih.gov
http://tcga-data.nci.nih.gov/docs/publications/brca_2012
http://tcga-data.nci.nih.gov/docs/publications/brca_2012
http://explorer.cancerregulome.org
http://explorer.cancerregulome.org
http://cbioportal.org
http://cbioportal.org
https://wiki.nci.nih.gov/display/TCGA/TCGA+ata+rimer
https://wiki.nci.nih.gov/display/TCGA/TCGA+ata+rimer
www.nature.com/reprints
www.nature.com/doifinder/10.1038/nature11412
www.nature.com/doifinder/10.1038/nature11412
mailto:cperou@med.unc.edu


Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts 02115,
USA. 9Department of Medical Oncology and the Center for Cancer Genome Discovery,
Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. 10Department of
Pathology, Harvard Medical School, Boston, Massachusetts 02215, USA. 11Belfer Institute
for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115,
USA. 12The Center for Biomedical Informatics, Harvard Medical School, Boston,
Massachusetts 02115, USA. 13Department of Genetics, Harvard Medical School and
Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA.
14Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 27599, USA. 15Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. 16Eshelman School of
Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,
USA. 17Institute for Pharmacogenetics and Individualized Therapy, University of North
CarolinaatChapelHill,ChapelHill,NorthCarolina27599,USA. 18DepartmentofPathology
and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, Chapel
Hill, North Carolina 27599, USA. 19Department of Internal Medicine, Division of Medical
Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,
USA. 20USC Epigenome Center, University of Southern California, Los Angeles, California
90033, USA. 21Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer
Center at Johns Hopkins University, Baltimore, Maryland 21231, USA. 22Dan L Duncan
CancerCenter,BaylorCollegeofMedicine,Houston,Texas77030,USA.23HumanGenome
Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.
24Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston,
Texas 77030, USA. 25Department of Molecular Virology and Microbiology, Baylor College
of Medicine, Houston, Texas 77030, USA. 26The Eli and Edythe L. Broad Institute of
Massachusetts Institute Of Technology and Harvard University, Cambridge,
Massachusetts 02142, USA. 27Institute for Applied Cancer Science, Department of
Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
77054, USA. 28Department of Genomic Medicine, University of Texas MD Anderson
Cancer Center, Houston, Texas 77054,USA. 29DivisionofGenetics, BrighamandWomen’s
Hospital, Boston, Massachusetts 02115, USA. 30Informatics Program, Children’s Hospital,
Boston, Massachusetts 02115, USA. 31Institute for Systems Biology, Seattle, Washington
98109, USA. 32Tampere University of Technology, Tampere, Finland. 33Cancer Genomics
Core Laboratory, MD Anderson Cancer Center, Houston, Texas 77030, USA.
34Computational BiologyCenter, Memorial Sloan-Kettering Cancer Center, New York,New
York 10065, USA. 35Department of Epidemiology and Biostatistics, Memorial
Sloan-Kettering Cancer Center, New York, New York 10065, USA. 36Human Oncology and
Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
10065, USA. 37Oregon Health and Science University, 3181 Southwest Sam Jackson Park
Road, Portland, Oregon 97239, USA. 38Department of Systems Biology, The University of
Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. 39Kleberg Center for
Molecular Markers, The University of Texas MD Anderson Cancer Center, Houston, Texas
77030, USA. 40Department of Bioinformatics and Computational Biology, The University
of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. 41Department of
Biomolecular Engineering and Center for Biomolecular Science and Engineering,
University of California Santa Cruz, Santa Cruz, California 95064, USA. 42Howard Hughes
Medical Institute, University of California Santa Cruz, Santa Cruz, California 95064, USA.

43Buck Institute for Research on Aging, Novato, California 94945, USA. 44Center for
Bioinformatics and Information Technology,NationalCancer Institute, Rockville,Maryland
20852, USA. 45The Ohio State University College of Medicine, Department of Pathology,
Columbus,Ohio43205,USA. 46TheOhioState UniversityCollegeofMedicine,Department
Pediatrics,Columbus,Ohio43205,USA. 47TheResearch InstituteatNationwideChildren’s
Hospital, Columbus, Ohio 43205, USA. 48ABS Inc. Indianapolis, Indiana 46204, USA.
49ABS Inc. Wilmington, Delaware 19801, USA. 50Indiana University School of Medicine,
Indianapolis, Indiana 46202, USA. 51Helen F. Graham Cancer Center, Christiana Care,
Newark, Delaware 19713, USA. 52Moscow City Clinical Oncology Dispensary 1 and the
Central IHC Laboratory of the Moscow Health Department, Moscow 105005, Russia.
53Russian Cancer Research Center, Moscow 115478, Russia. 54Cureline, Inc., South San
Francisco, California 94080, USA. 55Department of Surgery, Duke University Medical
Center,Durham,NorthCarolina27710,USA. 56TheGreaterPolandCancerCentre,Poznań
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